134 research outputs found

    Quality assurance in stereotactic radiosurgery/radiotherapy according to DIN 6875-1

    Get PDF
    The new DIN (' Deutsche Industrie- Norm') 6875- 1, which is currently being finalised, deals with quality assurance ( QA) criteria and tests methods for linear accelerator and Gamma Knife stereotactic radiosurgery/ radiotherapy including treatment planning, stereotactic frame and stereotactic imaging and a system test to check the whole chain of uncertainties. Our existing QA program, based on dedicated phantoms and test procedures, has been refined to fulfill the demands of this new DIN. The radiological and mechanical isocentre corresponded within 0.2 mm and the measured 50% isodose lines were in agreement with the calculated ones within less than 0.5 mm. The measured absorbed dose was within 3%. The resultant output factors measured for the 14-, 8- and 4- mm collimator helmet were 0.9870 +/- 0.0086, 0.9578 +/- 0.0057 and 0.8741 +/- 0.0202, respectively. For 170 consecutive tests, the mean geometrical accuracy was 0.48 +/- 0.23 mm. Besides QA phantoms and analysis software developed in- house, the use of commercially available tools facilitated the QA according to the DIN 6875- 1 with which our results complied. Copyright (C) 2004 S. Karger AG, Basel

    Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>to investigate the factors affecting survival and toxicity in patients treated with stereotactic radiosurgery (SRS), with special attention to volumes of brain receiving a specific dose (V10 - V16 Gy) as predictors for brain radionecrosis.</p> <p>Patients and Methods</p> <p>Two hundred six consecutive patients with 310 cerebral metastases less than 3.5 cm were treated with SRS as primary treatment and followed prospectively at University of Rome La Sapienza Sant'Andrea Hospital. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS. Univariate and multivariate analysis using a Cox proportional hazards regression model were performed to determine the predictive value of prognostic factors for treatment outcome and SRS-related complications.</p> <p>Results</p> <p>Median overall survival and brain control were 14.1 months and 10 months, respectively. The 1-year and 2-year survival rates were 58% and 24%, and respective brain control were 43% and 22%. Sixteen patients recurred locally after SRS, with 1-year and 2-year local control rates of 92% and 84%, respectively. On multivariate analysis, stable extracranial disease and KPS >70 were associated with the most significant survival benefit. Neurological complications were recorded in 27 (13%) patients. Severe neurological complications (RTOG Grade 3 and 4) occurred in 5.8% of patients. Brain radionecrosis occurred in 24% of treated lesions, being symptomatic in 10% and asymptomatic in 14%. On multivariate analysis, V10 through V16 Gy were independent risk factors for radionecrosis, with V10 Gy and V12 Gy being the most predictive (p = 0.0001). For V10 Gy >12.6 cm<sup>3 </sup>and V12 Gy >10.9 cm<sup>3 </sup>the risk of radionecrosis was 47%.</p> <p>Conclusions</p> <p>SRS alone represents a feasible option as initial treatment for patients with brain metastases, however a significant subset of patients may develop neurological complications. Lesions with V12 Gy >8.5 cm<sup>3 </sup>carries a risk of radionecrosis >10% and should be considered for hypofractionated stereotactic radiotherapy especially when located in/near eloquent areas.</p

    The role of whole brain radiation therapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    QUESTION: Should patients with newly-diagnosed metastatic brain tumors undergo open surgical resection versus whole brain radiation therapy (WBRT) and/or other treatment modalities such as radiosurgery, and in what clinical settings? TARGET POPULATION: These recommendations apply to adults with a newly diagnosed single brain metastasis amenable to surgical resection. RECOMMENDATIONS: Surgical resection plus WBRT versus surgical resection alone Level 1 Surgical resection followed by WBRT represents a superior treatment modality, in terms of improving tumor control at the original site of the metastasis and in the brain overall, when compared to surgical resection alone. Surgical resection plus WBRT versus SRS + or - WBRT Level 2 Surgical resection plus WBRT, versus stereotactic radiosurgery (SRS) plus WBRT, both represent effective treatment strategies, resulting in relatively equal survival rates. SRS has not been assessed from an evidence-based standpoint for larger lesions (\u3e3 cm) or for those causing significant mass effect (\u3e1 cm midline shift). Level 3 Underpowered class I evidence along with the preponderance of conflicting class II evidence suggests that SRS alone may provide equivalent functional and survival outcomes compared with resection + WBRT for patients with single brain metastases, so long as ready detection of distant site failure and salvage SRS are possible. Note The following question is fully addressed in the WBRT guideline paper within this series by Gaspar et al. Given that the recommendation resulting from the systematic review of the literature on this topic is also highly relevant to the discussion of the role of surgical resection in the management of brain metastases, this recommendation has been included below

    Radiochirurgische Behandlung von hormoninaktiven Hypophysenadenomen

    No full text

    Feasibility, safety and outcome of frameless robotic radiosurgery for brain metastases

    No full text

    Spinale Radiochirurgie gegen spinalen Tumorschmerz

    No full text
    corecore