6 research outputs found

    Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    Get PDF
    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected

    An improved turbulence model for separation flow in a centrifugal pump

    No full text
    For the stable and reliable operation of centrifugal pump, the transient flow must be studied and the separation region should be avoided. Three-dimensional, incompressible, steady, and transient flows in a centrifugal pump at specific speed within 74 were numerically studied using shear stress transport k - ω turbulence model, and an improved explicit algebraic Reynolds stress model–rotation-curvature turbulence model was proposed by considering the effects of rotation and curvature in the impeller passages in this work. Steady and transient computations were conducted to compare with the experiments. The comparison of pump hydraulic performance showed that the explicit algebraic Reynolds stress model–rotation-curvature turbulence model was better than the original model, especially between 0.6 Q BEP and 1.2 Q BEP ; the improved model could enhance the head prediction of pump by about 1%–7% than that with the original model. Then, the visualization of the vortex evolution was observed to validate the unsteady simulations. Good agreement was investigated between calculations and visualizations. It is indicated that the explicit algebraic Reynolds stress model–rotation-curvature model can successfully capture the separation flow
    corecore