11,145 research outputs found

    Soft supersymmetry-breaking terms from supergravity and superstring models

    Get PDF
    We review the origin of soft supersymmetry-breaking terms in N=1 supergravity models of particle physics. We first consider general formulae for those terms in general models with a hidden sector breaking supersymmetry at an intermediate energy scale. The results for some simple models are given. We then consider the results obtained in some simple superstring models in which particular assumptions about the origin of supersymmetry breaking are made. These are models in which the seed of supersymmetry breaking is assumed to be originated in the dilaton/moduli sector of the theory.Comment: 24 pages, to appear in the book `Perspectives on Supersymmetry', World Scientific, Editor G. Kane; some comments and references adde

    Edge of Chaos and Genesis of Turbulence

    Full text link
    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable travelling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space

    Molecular gas in low-metallicity starburst galaxies: Scaling relations and the CO-to-H2_2 conversion factor

    Full text link
    We study the molecular content and the star formation efficiency of 21 Blue Compact Dwarfs (BCDs). We present CO(1-0) and (2-1) observations, further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We find the CO luminosity to be correlated with the stellar and HI masses, SFR tracers, the size of the starburst and its metallicity. BCDs appear offset from the Schmidt-Kennicutt (SK) law, showing extremely low (â‰Č\lesssim0.1 Gyr) H2 and H2+HI depletion timescales. The departure from the SK law is smaller when considering H2+HI rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction and H2 depletion timescale of BCDs is found to be strongly correlated with metallicity. Using this and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z∝(Z/Z⊙)−y\alpha_{CO, Z} \propto (Z/Z_{\odot})^{-y}, with y=1.5(±0.3)y=1.5(\pm 0.3) in qualitative agreement with previous determinations, dust-based measurements, and recent model predictions. Our results suggest that in vigorously star-forming dwarfs the fraction of H2 traced by CO decreases by a factor of about 40 from Z∌Z⊙Z \sim Z_{\odot} to Z∌0.1Z⊙Z \sim 0.1 Z_{\odot}, leading to a strong underestimation of the H2 mass in metal-poor systems when a Galactic αCO,MW\alpha_{CO, MW} is considered. Adopting αCO,Z\alpha_{CO, Z} we find that departures from the SK law are partially resolved. Our results suggest that starbursting dwarfs have shorter depletion gas timescales and lower molecular fractions compared to normal late-type disc galaxies even accounting for the molecular gas not traced by CO emission in metal-poor environments, raising additional constraints to model predictions (Abridged).Comment: 18 pages, 14 Figures, 4 Tables: Accepted for publication in A&

    Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components

    Full text link
    This work presents the structural decomposition of a sample of 11 disk galaxies, which span a range of different morphological types. The U, B, V, R, and I photometric information given in Paper I (color and color-index images and luminosity, ellipticity, and position-angle profiles) has been used to decide what types of components form the galaxies before carrying out the decomposition. We find and model such components as bulges, disks, bars, lenses and rings.Comment: 14 figures. Accepted for publication in A&

    On the nonlinear stability of mKdV breathers

    Full text link
    A mathematical proof for the stability of mKdV breathers is announced. This proof involves the existence of a nonlinear equation satisfied by all breather profiles, and a new Lyapunov functional which controls the dynamics of small perturbations and instability modes. In order to construct such a functional, we work in a subspace of the energy one. However, our proof introduces new ideas in order to attack the corresponding stability problem in the energy space. Some remarks about the sine-Gordon case are also considered.Comment: 7 p

    Reversible enhancement of the magnetism of ultrathin Co films by H adsorption

    Full text link
    By means of ab initio calculations, we have investigated the effect of H adsorption in the structural, electronic and magnetic properties of ultrathin Co films on Ru(0001). Our calculations predict that H occupies hollow sites preserving the two-dimensional 3-fold symmetry. The formation of a complete H overlayer leads to a very stable surface with strong H-Co bonds. H tends to suppress surface features, in particular, the enhancement of the magnetic moments of the bare film. The H-induced effects are mostly confined to the Co atoms bonded to H, independent of the H coverage or of the thickness and the structure of the Co film. However, for partial H coverages a significant increase occurs in the magnetic moment for the surface Co atoms not bonded to H, leading to a net enhancement of surface magnetism.Comment: 6 pages, 4 figures, 3 table

    Integration of Langevin Equations with Multiplicative Noise and Viability of Field Theories for Absorbing Phase Transitions

    Full text link
    Efficient and accurate integration of stochastic (partial) differential equations with multiplicative noise can be obtained through a split-step scheme, which separates the integration of the deterministic part from that of the stochastic part, the latter being performed by sampling exactly the solution of the associated Fokker-Planck equation. We demonstrate the computational power of this method by applying it to most absorbing phase transitions for which Langevin equations have been proposed. This provides precise estimates of the associated scaling exponents, clarifying the classification of these nonequilibrium problems, and confirms or refutes some existing theories.Comment: 4 pages. 4 figures. RevTex. Slightly changed versio

    Non perturbative renormalization group approach to surface growth

    Full text link
    We present a recently introduced real space renormalization group (RG) approach to the study of surface growth. The method permits us to obtain the properties of the KPZ strong coupling fixed point, which is not accessible to standard perturbative field theory approaches. Using this method, and with the aid of small Monte Carlo calculations for systems of linear size 2 and 4, we calculate the roughness exponent in dimensions up to d=8. The results agree with the known numerical values with good accuracy. Furthermore, the method permits us to predict the absence of an upper critical dimension for KPZ contrarily to recent claims. The RG scheme is applied to other growth models in different universality classes and reproduces very well all the observed phenomenology and numerical results. Intended as a sort of finite size scaling method, the new scheme may simplify in some cases from a computational point of view the calculation of scaling exponents of growth processes.Comment: Invited talk presented at the CCP1998 (Granada

    On the Extreme Positive Feedback Star-Forming Mode from Massive and Compact Superstar Clusters

    Full text link
    The force of gravity acting within the volume occupied by young, compact and massive superstar clusters, is here shown to drive in situ all the matter deposited by winds and supernovae into several generations of star formation. These events are promoted by radiative cooling which drains the thermal energy of the ejected gas causing its accumulation to then rapidly exceed the gravitational instability criterion. A detailed account of the integrated ionizing radiation and mechanical luminosity as a function of time is here shown to lead to a new stationary solution. In this, the mass deposition rate M˙\dot M, instead of causing a wind as in the adiabatic solution, turns into a positive feedback star-forming mode equal to the star formation rate. Some of the implications of this extreme positive feedback mode are discussed.Comment: 4 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter
    • 

    corecore