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1 Introduction

A phenomenological implementation of the idea of supersymmetry (SUSY)
in the standard model requires the presence of SUSY breaking. There are
essentially two large families of models in this context, depending on whether
the scale of spontaneous SUSY breaking is high (of order 1010–1013 GeV)
or low (of order 1–102 TeV). We will focus on the former possibility. The
latter possibility, considered in other chapters of this book, has only recently
received sufficient attention, since it was realized from the very first days of
SUSY phenomenology that the existence of certain supertrace constraints in
spontaneously broken SUSY theories made the building of realistic models
quite complicated. Possible solutions to these early difficulties are discussed
elsewhere and we are not going to discuss them further here.

A more pragmatic attitude to the issue of SUSY breaking is the addition
of explicit soft SUSY-breaking terms of the appropriate size (of order 102–
103 GeV) in the Lagrangian and with appropriate flavour symmetries to avoid
dangerous flavour-changing neutral currents (FCNC) transitions. The prob-
lem with this pragmatic attitude is that, taken by itself, lacks any theoretical
explanation. Supergravity theories provide an attractive context that can jus-
tify such a procedure. Indeed, if one considers the SUSY standard model and
couples it to N = 1 supergravity, the spontaneous breaking of local SUSY in a
hidden sector generates explicit soft SUSY-breaking terms of the required form
in the effective low-energy Lagrangian1,2. If SUSY is broken at a scale ΛS , the
soft terms have a scale of order Λ2

S/MPlanck. Thus one obtains the required
size if SUSY is broken at an intermediate scale ΛS ∼ 1010 GeV, as mentioned
above. Large classes of supergravity models, as we discuss in section 2, give
rise to universal soft SUSY-breaking terms, providing for an understanding of
FCNC supression. In the last few years it has often been stated in the literature
that this class of supergravity models have a flavour-changing problem. We
think more appropriate to say that some particular models get interesting con-
straints from FCNC bounds. A generic statement like that seems unjustified,
since it is usually based on a strong assumption, i.e. the existence of a region
in between the grand unified theory (GUT) scale and the Planck (or super-
string) scale in which important flavour non-diagonal renormalization effects
take place.

Recently there have been studies of supergravity models obtained in partic-
ularly simple classes of superstring compactifications 3. Such heterotic models
have a natural hidden sector built-in: the complex dilaton field S and the
complex moduli fields Ti. These gauge singlet fields are generically present in
four-dimensional models: the dilaton arises from the gravitational sector of the
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theory and the moduli parametrize the size and shape of the compactified vari-
ety. Assuming that the auxiliary fields of those multiplets are the seed of SUSY
breaking, interesting predictions for this simple class of models are obtained.
These are reviewed in section 3. The analysis does not assume any specific
SUSY-breaking mechanism. We leave section 4 for some final comments and
additional references to recent work.

2 Soft terms from supergravity

2.1 General computation of soft terms

The full N=1 supergravity Lagrangian 1 (up to two derivatives) is specified
in terms of two functions which depend on the chiral superfields φM of the
theory (denoted by the same symbol as their scalar components): the analytic
gauge kinetic function fa(φM ) and the real gauge-invariant Kähler function
G(φM , φ∗

M ). fa determines the kinetic terms for the fields in the vector mul-
tiplets and in particular the gauge coupling constant, Refa = 1/g2

a. The
subindex a is associated with the different gauge groups of the theory since in
general G =

∏
a Ga. For example, in the case of the pure SUSY standard model

coupled to supergravity, a would correspond to SU(3)c, SU(2)L, U(1)Y . G is
a combination of two functions

G(φM , φ∗
M ) = K(φM , φ∗

M ) + log |W (φM )|2 , (1)

where K is the Kähler potential, W is the complete analytic superpotential,
and we use from now on the standard supergravity mass units where MP ≡
MPlanck/

√
8π = 1. W is related with the Yukawa couplings (which eventually

determine the fermion masses) and also includes possibly non-perturbative
effects

W = Ŵ (hm) +
1

2
µαβ(hm)CαCβ +

1

6
Yαβγ(hm)CαCβCγ + ... , (2)

where we assume two different types of scalar fields φM = hm, Cα: Cα corre-
spond to the observable sector and in particular include the SUSY standard
model fields, while hm correspond to a hidden sector. The latter fields may
develop large (≫ MW ) vacuum expectation values (VEVs) and are responsi-
ble for SUSY breaking if some auxiliary components Fm (see below) develop
nonvanishing VEVs. The ellipsis indicates terms of higher order in Cα whose
coefficients are suppressed by negative powers of MP . The second derivative
of K determines the kinetic terms for the fields in the chiral supermultiplets
and is thus important for obtaining the proper normalization of the fields.
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Expanding in powers of Cα and C∗α we have

K = K̂(hm, h∗
m) + K̃αβ(hm, h∗

m)C∗αCβ

+

[
1

2
Zαβ(hm, h∗

m)CαCβ + h.c.

]
+ ... , (3)

where the ellipsis indicates terms of higher order in Cα and C∗α. Notice that
the coefficients K̃αβ , Yαβγ , µαβ , and Zαβ which appear in (2) and (3) may
depend on the hidden sector fields in general. The bilinear terms associated
with µαβ and Zαβ are often forbidden by gauge invariance in specific models,
but they may be relevant in order to solve the so-called µ problem in the
context of the minimal supersymmetric standard model (MSSM), as we will
discuss below. In this case the two Higgs doublets, which are necessary to break
the electroweak symmetry, have opposite hypercharges. Therefore those terms
are allowed and may generate both the µ parameter and the corresponding
soft bilinear term.

The (F part of the) tree-level supergravity scalar potential, which is crucial
to analyze the breaking of SUSY, is given by

V (φM , φ∗
M ) = eG

(
GMKMN̄GN̄ − 3

)
=
(
F̄ N̄KN̄MFM − 3eG

)
, (4)

where GM ≡ ∂MG ≡ ∂G/∂φM and the matrix KMN̄ is the inverse of the
Kähler metric KN̄M ≡ ∂N̄∂MK. We have also written V as a function of the
φM auxiliary fields, FM = eG/2KMP̄ GP̄ . When, at the minimum of the scalar
potential, some of the hidden sector fields hm acquire VEVs in such a way
that at least one of their auxiliary fields (K̂mn is the inverse of the hidden field
metric K̂nm)

Fm = eG/2K̂mnGn (5)

is non-vanishing, then SUSY is spontaneously broken and soft SUSY-breaking
terms are generated in the observable sector. Let us remark that, for simplicity,
we are assuming vanishing D-term contributions to SUSY breaking. When
this is not the case, their effects on soft terms can be found e.g. in 4. The
goldstino, which is a combination of the fermionic partners of the above fields,
is swallowed by the gravitino via the superHiggs effect. The gravitino becomes
massive and its mass

m3/2 = eG/2 (6)

sets the overall scale of the soft parameters.
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General results

Using the above information, the soft SUSY-breaking terms in the observable
sector can be computed. They are obtained by replacing hm and their auxil-
iary fields Fm by their VEVs in the supergravity Lagrangian and taking the
so-called flat limit where MP → ∞ but m3/2 is kept fixed. Then the non-
renormalizable gravity corrections are formally eliminated and one is left with
a global SUSY Lagrangian plus a set of soft SUSY-breaking terms. On the one
hand, from the fermionic part of the supergravity Lagrangian, soft gaugino
masses for the canonically normalized gaugino fields can be obtained

Ma =
1

2
(Refa)

−1 Fm∂mfa , (7)

as well as the un-normalized Yukawa couplings of the observable sector fermions
and the SUSY un-normalized masses of some of them (those with bilinear terms
either in the superpotential or in the Kähler potential, e.g. the Higgsinos in
the case of the MSSM)

Y ′
αβγ =

Ŵ ∗

|Ŵ |
eK̂/2Yαβγ , (8)

µ′
αβ =

Ŵ ∗

|Ŵ |
eK̂/2µαβ + m3/2Zαβ − F

m
∂mZαβ . (9)

On the other hand, scalar soft terms arise from the expansion of the super-
gravity scalar potential (4)

Vsoft = m′2
αβC∗αCβ +

(
1

6
A′

αβγCαCβCγ +
1

2
B′

αβCαCβ + h.c.

)
. (10)

In the most general case, when hidden and observable sector matter metrics
are not diagonal, the un-normalized soft scalar masses, trilinear and bilinear
parameters are given respectively by 5

m′2
αβ =

(
m2

3/2
+ V0

)
K̃αβ

− F
m
(
∂m∂nK̃αβ − ∂mK̃αγK̃γδ∂nK̃δβ

)
Fn , (11)

A′
αβγ =

Ŵ ∗

|Ŵ |
eK̂/2Fm

[
K̂mYαβγ + ∂mYαβγ

−
(
K̃δρ∂mK̃ραYδβγ + (α ↔ β) + (α ↔ γ)

)]
, (12)
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B′
αβ =

Ŵ ∗

|Ŵ |
eK̂/2

{
Fm

[
K̂mµαβ + ∂mµαβ

−
(
K̃δρ∂mK̃ραµδβ + (α ↔ β)

)]
− m3/2µαβ

}

+
(
2m2

3/2
+ V0

)
Zαβ − m3/2F

m
∂mZαβ

+ m3/2F
m
[
∂mZαβ −

(
K̃δρ∂mK̃ραZδβ + (α ↔ β)

)]

− F
m

Fn
[
∂m∂nZαβ −

(
K̃δρ∂nK̃ρα∂mZδβ + (α ↔ β)

)]
, (13)

where K̃αβ is the inverse of the observable matter metric K̃βγ . V0 is the VEV

of the scalar potential (4), i.e. the tree-level cosmological constant

V0 = F
m

K̂mnFn − 3m2

3/2
. (14)

It has a bearing on measurable quantities like scalar masses and therefore it
is preferable to leave it undetermined (see 6,7,8 for a discussion on this point).
Notice that, after normalizing the fields to get canonical kinetic terms, the first
piece in (11) will lead to universal diagonal soft masses but the second piece
will generically induce off-diagonal contributions. Actually, universality is a
desirable property not only to reduce the number of independent parameters
in SUSY models, but also for phenomenological reasons, particularly to avoid
FCNC. The latter is a low-energy phenomenological constraint that must be
satisfied by any supergravity model. It is worth mentioning in this context
that one–loop corrections to the soft parameters (7), (11), (12) and (13) have
recently been computed in 9. They may induce FCNC phenomena even when
the tree-level computation gives a universal soft mass. Also a discussion about
the loop effects on the contribution of the cosmological constant to the soft
terms can be found there. Concerning the A and B parameters, notice that
we have not factored out the Yukawa couplings and mass terms respectively as
usual, since proportionality is not guaranteed in (12) and (13). Finally, from
(5) and (6), one can easily see that the (tree-level) soft parameters in (7), (11)
and (12) are generically O(m3/2), as mentioned above. A departure from this
result is only possible when some of them vanish. We will mention below some
examples of this type, i.e. the case of no-scale supergravity models and special
limits of superstring models.

The µ problem

The set of mass parameters in the MSSM Higgs potential includes, besides
O(m2

3/2
) soft masses, the square of µ′

αβ (9) and the B parameter (13), which

is O(m3/2µ
′
αβ). In order to have correct electroweak symmetry breaking, the

5



SUSY mass term µ′
αβ should also be O(m3/2). This is the so-called µ problem2.

In this respect, notice that µ′
αβ = O(m3/2) is naturally achieved in the presence

of a non-vanishing Zαβ in the Kähler potential 10,11. The other possible source
of the mass µ′

αβ is the SUSY mass µαβ in the superpotential 12. This case
is more involved since in principle the natural scale of µαβ would be MP .
However, a possible solution can be obtained if the superpotential contains
e.g. a non-renormalizable term 11,12

λ(hm)Ŵ (hm)H1H2 , (15)

characterized by the coupling λ, which mixes the observable sector with the

hidden sector. Since m3/2 = eG/2 = eK̂/2|Ŵ |, if that term exists then an effec-
tive µ parameter O(m3/2) is generated dynamically when hm acquire VEVs:

µ = λ(hm)Ŵ (hm) . (16)

We should add that both mechanisms to generate µ′
αβ , a bilinear term in the

Kähler potential or in the superpotential, could be present simultaneously.
Notice also that the two mechanisms are equivalent if Z depends only on
hm (not on h∗

m). Indeed, in that case the supergravity theory is equivalent
to the one with a Kähler potential K without the terms ZH1H2 + h.c. and
a superpotential WeZH1H2 , since the G function (1) is the same for both.
After expanding the exponential, the superpotential will have a contribution
ZŴH1H2, i.e. a term of the type (15). Finally, let us mention that several
new sources of the µ term due to loop effects on (9), which are naturally of
order the weak scale, have recently been computed in 9.

We recall that the solutions mentioned here in order to solve the µ problem
are naturally present in superstring models. For instance, in large classes of
superstring models the Kähler potential does contain bilinear terms analytic
in the observable fields as in (3), with specific coefficients Zαβ

13,14,15, so that
a µ parameter may be naturally generated. Concerning superpotential con-
tributions, we recall that a ‘direct’ µH1H2 term in W (2) is naturally absent
(otherwise the natural scale for µ would be MP ), since in supergravity models
deriving from superstring theory mass terms for light fields are forbidden in
the superpotential by scale invariance of the theory. However, the superpo-
tential (2) may well contain an ‘effective’ µH1H2 term, e.g. a term of the
type (15) 11,15 induced by non-perturbative SUSY-breaking mechanisms like
gaugino-squark condensation in the hidden sector.

The low-energy spectrum

The results (7), (8), (9), (11), (12) and (13) should be understood as being
valid at some high scale O(MP ) and the standard RGEs must be used to obtain
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the low-energy values. Although the SUSY spectrum will depend in general on
the details of SU(2)L×U(1)Y breaking, there are several particles whose mass
is rather independent of those details and is mostly given by the boundary
conditions and the renormalization group running. In particular, neglecting
all Yukawa couplings except the one of the top, that is the case of the gluino
g, all the squarks (except stops and left sbottom) QL = (uL, dL), uc

L, dc
L and

all the sleptons LL = (vL, eL), ec
L. For all these particles one can write explicit

expressions for the masses in terms of the soft parameters (after normalizing
the fields to get canonical kinetic terms). For instance, assuming that gauginos
have a common initial mass (e.g. due to a universal f function) and that there
is nothing but the MSSM in between the weak scale and the Planck scale, one
obtains the approximate numerical expressions:

M2

g (MZ) ≃ 9.8 M2 ,

m2

QL
(MZ) ≃ m2

QL
+ 8.3 M2 ,

m2

uc

L
,dc

L

(MZ) ≃ m2

uc

L
,dc

L

+ 8 M2 ,

m2

LL
(MZ) ≃ m2

LL
+ 0.7 M2 ,

m2

ec

L

(MZ) ≃ m2

ec

L

+ 0.23 M2 , (17)

where the second term in the expression of the scalar masses is the effect
of gaugino loop contributions. In the above formulae we have neglected the
scalar potential D-term contributions, which are normally small compared to
the terms above, and the contribution of the U(1)Y D-term in the RGEs of
scalar masses. These may be found e.g. in 16.

2.2 Supergravity models

We now specialize the above general discussion to the case of supergravity
models where the observable (here MSSM) matter fields have diagonal metric:

K̃αβ(hm, h∗
m) = δαβK̃α(hm, h∗

m) . (18)

This possibility is particularly interesting due to its simplicity and also for
phenomenological reasons related to the absence of FCNC in the effective low-
energy theory (see 6,17,18,19,20,9 for a discussion on this point). Besides, the
supergravity models that will be studied below correspond to this situation.
Then the Kähler potential (3), to lowest order in the observable fields Cα, and
the superpotential (2) have the form

K = K̂(hm, h∗
m) + K̃α(hm, h∗

m)C∗αCα + [Z(hm, h∗
m)H1H2 + h.c.] ,(19)

7



W = Ŵ (hm) + µ(hm)H1H2 +
∑

generations

[Yu(hm)QLH2u
c
L

+ Yd(hm)QLH1d
c
L + Ye(hm)LLH1e

c
L] , (20)

where Cα = QL, uc
L, dc

L, LL, ec
L, H1, H2, and we have taken for simplicity di-

agonal Yukawa couplings (Yαβγ = Yu, Yd, Ye, in a self-explanatory notation).
Now the form of the effective soft Lagrangian obtained from (7) and (10) is
given by

Lsoft =
1

2
(Maλ̂aλ̂a + h.c.) − m2

αĈ∗αĈα

−
(

1

6
Aαβγ ŶαβγĈαĈβĈγ + Bµ̂Ĥ1Ĥ2 + h.c.

)
, (21)

with

m2

α =
(
m2

3/2
+ V0

)
− F

m
Fn∂m∂n log K̃α , (22)

Aαβγ = Fm
[
K̂m + ∂m log Yαβγ − ∂m log(K̃αK̃βK̃γ)

]
, (23)

B = µ̂−1(K̃H1
K̃H2

)−1/2

{
Ŵ ∗

|Ŵ |
eK̂/2µ

(
Fm

[
K̂m + ∂m log µ

− ∂m log(K̃H1
K̃H2

)
]
− m3/2

)

+
(
2m2

3/2
+ V0

)
Z − m3/2F

m
∂mZ

+ m3/2F
m
[
∂mZ − Z∂m log(K̃H1

K̃H2
)
]

− F
m

Fn
[
∂m∂nZ − ∂mZ∂n log(K̃H1

K̃H2
)
]}

, (24)

where Ĉα and λ̂a are the scalar and gaugino canonically normalized fields
respectively

Ĉα = K̃1/2

α Cα , (25)

λ̂a = (Refa)
1/2λa , (26)

and the rescaled Yukawa couplings and µ parameter

Ŷαβγ = Yαβγ
Ŵ ∗

|Ŵ |
eK̂/2 (K̃αK̃βK̃γ)−1/2 , (27)

µ̂ =

(
Ŵ ∗

|Ŵ |
eK̂/2µ + m3/2Z − F

m
∂mZ

)
(K̃H1

K̃H2
)−1/2 , (28)
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have been factored out in the A and B terms as usual.
Now we are ready to study specific supergravity models. As follows from

the above discussion, the particular values of the soft parameters depend on
the type of supergravity theory from which the MSSM derives and, in general,
on the mechanism of SUSY breaking (through the presence of Ŵ (hm) in m3/2

and F terms). However, it is still possible to learn things about soft parameters
without knowing all the details of SUSY breaking. In order to show this, let
us consider two simple and interesting supergravity models studied extensively
in the literature: minimal supergravity and no-scale supergravity.

i) Minimal supergravity

This model corresponds to use the form of K that leads to minimal (canonical)
kinetic terms in the supergravity Lagrangian, namely

K̃α(hm, h∗
m) = 1 (29)

in (19). Then, irrespective of the SUSY-breaking mechanism, the scalar masses
and the A, B parameters can be straightforwardly computed using (22), (23)
and (24)

m2

α = m2

3/2
+ V0 , (30)

Aαβγ = Fm
(
K̂m + ∂m log Yαβγ

)
, (31)

B = µ̂−1

{
Ŵ ∗

|Ŵ |
eK̂/2µ

[
Fm

(
K̂m + ∂m log µ

)
− m3/2

]

+
(
2m2

3/2
+ V0

)
Z + m3/2

(
Fm∂mZ − F

m
∂mZ

)

− F
m

Fn∂m∂nZ
}

, (32)

where

µ̂ =
Ŵ ∗

|Ŵ |
eK̂/2µ + m3/2Z − F

m
∂mZ . (33)

Notice that the scalar masses are automatically universal in this model. Fur-
ther simplifications can be obtained if Z = 0 and if the superpotential pa-
rameters Yαβγ and µ do not depend on the hidden sector fields. Under such
assumptions, which are common in the literature, (31) and (32) generate uni-
versal A parameters, as well as the relation

B = A − m3/2 . (34)
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Furthermore, if we assume V0 = 0, then m ≡ mα = m3/2 and the well known
result for the B parameter, B = A−m, is recovered. This supergravity model
is attractive for its simplicity and for the natural explanation that it offers to
the universality of the soft scalar masses.

We remark that although minimal (canonical) kinetic terms for hidden
matter, K̂(hm, h∗

m) =
∑

m hmh∗
m, are also usually assumed, we have seen that

it is not a necessary condition in order to obtain the above results. Concerning
the kinetic terms for vector multiplets, it can be seen from (7) that the minimal
(canonical) choice fa = const. is not phenomenologically interesting, since it
implies Ma = 0. Nonvanishing and universal gaugino masses can be obtained if
all the fa have the same dependence on the hidden sector fields, i.e. fa(hm) =
caf(hm) for the different gauge group factors of the theory. This is in fact
what happens, at tree level, in supergravity models deriving from superstring
theory, as we will see in the next section. As an additional comment, we
stress that relation (34) depends on the particular mechanism that is used to
generate the µ parameter. As a counter-example, notice that if one takes e.g.
an hm–dependent µ as in (16) with λ = const., instead of taking µ = const.,
then (32) gives

B = 2m3/2 +
V0

m3/2

, (35)

with µ̂ = m3/2λ from (33). Thus the relation (34) does not hold. The above
result (35) can be obtained also if one takes µ = 0 in the superpotential (20)
and Z = const. in the Kähler potential (19). This also follows from our
discussion above about the equivalence between the two mechanisms when Z
is an analytic function.

ii) No-scale supergravity

In no-scale supergravity models 21, after the spontaneous breaking of SUSY,
the tree-level potential vanishes identically along some directions. A simple
example of this type of models has just one hidden field h, a Kähler potential
(19) with

K̂ = −3 log(h + h∗) , K̃α = (h + h∗)−1 , (36)

and a superpotential (20) with a hidden field independent Ŵ , i.e. Ŵ = const.
Then, the attractive result of a vanishing (flat) tree-level effective potential for
the hidden sector (14) is obtained

V0 = 0 , (37)

for all VEVs of h. On the other hand, the soft parameters, using (22), (23)

10



and (24), are given by

m2

α = 0 , (38)

Aαβγ = −m3/2(h + h∗)∂h log Yαβγ , (39)

B = −µ̂−1m3/2(h + h∗)2

{
Ŵ ∗

|Ŵ |
(h + h∗)−3/2∂hµ

+ m3/2 [∂h∗Z + ∂hZ + (h + h∗)∂h∂h∗Z]
}

, (40)

where

µ̂ = (h + h∗)

[
Ŵ ∗

|Ŵ |
(h + h∗)−3/2µ + m3/2Z + m3/2(h + h∗)∂h∗Z

]
.(41)

Assuming now that the µ and Z coefficients and the Yukawa couplings are
hidden field independent, the well known result for the soft parameters is
recovered:

mα = Aαβγ = B = 0 . (42)

Although the above parameters are vanishing at the high scale, gaugino masses
(7) can induce non-vanishing values at the electroweak scale due to radiative
corrections.

In conclusion, both supergravity models considered in this section are interest-
ing and give rise to concrete predictions for the soft parameters. However, one
can think of many possible supergravity models (with different K, W and f)
leading to different results for the soft terms. This arbitrariness, as we will see
in the next section, can be ameliorated in supergravity models deriving from
superstring theory, where K, f , and the hidden sector are more constrained.
We can already anticipate, however, that in such a context the kinetic terms are
generically not canonical. Besides, although Kähler potentials of the no-scale
type may appear at tree-level, the superpotentials are in general hidden field
dependent. Moreover, the Yukawa couplings Yαβγ and the bilinear coefficients
µ and Z are also generically hidden field dependent.

Finally, we remark that further constraints on the soft parameter space
of the MSSM can be obtained if one wishes to avoid low-energy charge and
color breaking minima deeper than the standard vacuum22. On these grounds,
and assuming also radiative symmetry breaking with nothing but the MSSM in
between the weak scale and the Planck scale, e.g. large regions in the parameter
space (m, M , A, B) of the minimal supergravity model i) are forbidden. In the
limiting case m = 0 the whole parameter space turns out to be excluded. This
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has obvious implications, e.g. for the no-scale supergravity model ii). If the
same kind of analysis is applied to the soft parameters of superstring models,
again strong constraints can be obtained, as we will comment below.

3 Soft terms from superstring theory

3.1 General parametrization of SUSY breaking

We are going to consider N=1 four-dimensional superstrings where the rôle
of hidden sector fields is effectively played by r moduli fields Ti, i = 1, ..., r
and the dilaton field S, i.e. hm = S, Ti following the notation of the previous
section. We recall that we are denoting the T - and U -type (Kähler class and
complex structure in the Calabi-Yau language) moduli collectively by Ti. The
associated effective N=1 supergravity Kähler potentials (3), to lowest order in
the matter fields, are of the type:

K = K̂(S, S∗, Ti, T
∗
i ) + K̃αβ(Ti, T

∗
i )C∗αCβ

+

[
1

2
Zαβ(Ti, T

∗
i )CαCβ + h.c.

]
, (43)

where at the superstring tree level

K̂(S, S∗, Ti, T
∗
i ) = − log(S + S∗) + K̂(Ti, T

∗
i ) . (44)

The first piece in (44) is the usual term corresponding to the complex dilaton
S that is present for any compactification. The second piece is the Kähler
potential of the moduli fields, which in general depends on the compactifica-
tion scheme and can be a complicated function. For the moment we leave it
generic, but in the next subsection we will analyze some specific classes of su-
perstring models where it has been computed. The same comment applies to
K̃αβ(Ti, T

∗
i ) and Zαβ(Ti, T

∗
i ). In the case of the superpotential (2), Yαβγ(Ti)

is also independent of S, but the non-perturbative contributions Ŵ (S, Ti) and
µαβ(S, Ti) may depend in general on both S and Ti. Finally, for any four-
dimensional superstring the tree-level gauge kinetic function is independent of
the moduli sector and is simply given by

fa = kaS , (45)

where ka is the Kac–Moody level of the gauge factor. Usually (level one case)
one takes k3 = k2 = 3

5
k1 = 1, but this is irrelevant for our tree-level computa-

tion since ka will not contribute to the soft parameters.
As we will show below, it is important to know what fields, either S or

Ti, play the predominant role in the process of SUSY breaking. This will
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have relevant consequences in determining the pattern of soft parameters, and
therefore the spectrum of physical particles 6. That is why it is very useful to
introduce the following parametrization, consistent with (14), for the VEVs of
dilaton and moduli auxiliary fields

FS =
√

3Cm3/2K
−1/2

SS
sin θe−iγS ,

F i =
√

3Cm3/2 cos θP ijΘj , (46)

where the constant C is defined as follows

C2 = 1 +
V0

3m2

3/2

. (47)

This parametrization is valid for the general case of off-diagonal moduli metric,
since P is a matrix canonically normalizing the moduli fields, i.e. P †K̂P = 1
where K̂ ≡ K̂ij and 1 stands for the unit matrix. The angle θ and the complex
parameters Θj just parametrize the direction of the goldstino in the S, Ti

field space (see below (5)) and
∑

j Θ∗
jΘj = 1. We have also allowed for the

possibility of some complex phases which could be relevant for the CP structure
of the theory (see 6,23,17,18,20,24 for a discussion on this point). Notice that if
the tree-level cosmological constant V0 is assumed to vanish, one has C = 1,
but we prefer for the moment to leave it undetermined as we did in the previous
section (see below (14)).

Notice that such a phenomenological approach allows us to ‘reabsorb’ (or
circumvent) our ignorance about the (nonperturbative) S- and Ti- dependent
part of the superpotential (2), Ŵ (S, Ti), which is responsible for SUSY break-
ing.

It is now a straightforward exercise, plugging (43), (44), (45) and (46) into
(7), (11), (12) and (13), to compute the soft SUSY-breaking parameters as
functions of θ and Θj . On the one hand, since the tree-level gauge kinetic

function is given for any four-dimensional superstring by (45), the tree-level
gaugino masses are universal, independent of the moduli sector, and simply
given by:

Ma =
√

3Cm3/2 sin θe−iγS . (48)

On the other hand, the bosonic soft parameters depend in general on the mod-
uli sector (i.e. on the functions K̃αβ, Zαβ(Ti, T

∗
i ), . . . and on the parameters

cos θ and Θj) and therefore they should be studied in the context of specific
classes of superstring models. However, we will first focus on the very interest-
ing limit cos θ = 0, which corresponds to the case where the dilaton sector is the
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source of all the SUSY breaking (see (46)) and the results are compactification
independent.

Dilaton SUSY breaking

Since the dilaton couples in a universal manner to all particles, this limit is
quite model independent 13,6. Indeed, the expressions for all the soft param-
eters (except B) are quite simple and independent of the four-dimensional
superstring considered. After canonically normalizing the fields, one obtains:

m2

α = m2

3/2
+ V0 , (49)

Ma =
√

3Cm3/2e
−iγS , (50)

Aαβγ = −Ma , (51)

B = µ̂−1(K̃H1
K̃H2

)−1/2

{
Ŵ ∗

|Ŵ |
eK̂/2µm3/2 (−1

−
√

3Ce−iγS [1 − (S + S∗) ∂S log µ]
)

+ Z
(
2m2

3/2
+ V0

)}
,(52)

where

µ̂ =

(
Ŵ ∗

|Ŵ |
eK̂/2µ + m3/2Z

)
(K̃H1

K̃H2
)−1/2 . (53)

Although the general expression for B is more involved than the ones of the
other soft parameters, a considerable simplification occurs if Z is the only
source of the µ term. In this case B reduces to

B = 2m3/2 +
V0

m3/2

. (54)

and thus becomes independent of the four-dimensional superstring considered,
as the other parameters. It is easy to check that the same result (54) is also
obtained if Z = 0 and the superpotential contains a µ coefficient of the form
(16), where now µ = λ(Ti)Ŵ (S, Ti). Notice that the expressions for mα (49)
and B (54) coincide with the corresponding ones obtained in the minimal
supergravity model i), (30) and (35) respectively. Furthermore, if Z = 0
and ∂Sµ = 0, the expression for B obtained from (52) coincides with the
corresponding one (34) of the minimal supergravity model.

This dilaton-dominated scenario is attractive for its simplicity and for the
natural explanation that it offers to the universality of the soft terms. For pos-
sible explicit SUSY–breaking mechanisms where this limit might be obtained
see 25. Because of the simplicity of this scenario, the low-energy predictions
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are quite precise 26,6,27,28. Assuming a vanishing cosmological constant and
imposing, e.g. from the limits on the electric dipole moment of the neutron,
γS = 0 mod π (49), (50) and (51) give c

mα = m3/2 , Ma = ±
√

3m3/2 , Aαβγ = −Ma . (55)

Since scalars are lighter than gauginos at the high scale and all mass ratios are
fixed, at low-energy (∼ MZ) one finds the following mass ratios for the gluino,
slepton and squark (except stops and left sbottom) masses

Mg : mQL
: muc

L
: mdc

L
: mLL

: mec

L
≃ 1 : 0.94 : 0.92 : 0.92 : 0.32 : 0.24 , (56)

as can be computed e.g. from (17). Although squarks and sleptons have the
same soft mass at the high scale, at low-energy the former are much heavier
than the latter because of the gluino contribution to the renormalization of
their masses. The rest of the spectrum is very dependent on the details of
SU(2)L × U(1)Y breaking and therefore on the values of B and µ̂. For B =
2m3/2 (see(54)) and µ treated as a free parameter this analysis can be found
in 26. Modifications to this scenario due to the effect of possible superstring
non–perturbative corrections to the Kähler potential can be found in 30.

It is worth noticing here that, although the value of µ̂ (53) is compacti-
fication dependent even in this dilaton-dominated scenario, the simple result
µ̂ = m3/2 can be obtained in any compactification scheme where the source of

µ̂ is a Z term in the Kähler potential fulfilling the property Z = (K̃H1
K̃H2

)1/2.
In fact, we will see in the next subsection that this is the case of some classes
of orbifold models. Notice that, when such a property holds, the whole SUSY
spectrum depends only on one parameter, m3/2, since

mα = m3/2 , Ma = ±
√

3m3/2 , Aαβγ = −Ma , B = 2m3/2 , µ̂ = m3/2 . (57)

Besides, this parameter can be fixed from the phenomenological requirement
of correct electroweak breaking 2M2

W /g2

2
= 〈|H1|2〉+ 〈|H2|2〉. Thus at the end

of the day we are left essentially with no free parameters. In 31 the consistency
of the above boundary conditions with the appropriate radiative electroweak
symmetry breaking was explored. Unfortunately, it was found that they are
not consistent with the measured value of the top-quark mass, namely the
mass obtained in this scheme turns out to be too small. A possible way-out
to this situation is to assume that also the moduli fields contribute to SUSY

c It is worth remarking that these particular boundary conditions have also interesting
finiteness properties. In particular, they preserve one-loop finiteness of N = 1 finite theories
29.
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breaking, since the soft terms are then modified. Of course, this amounts to
a departure of the pure dilaton-dominated scenario. This possibility will be
discussed in the context of orbifold models in the next subsection.

Finally, we recall that the phenomenological problem of the pure dilaton-
dominated limit mentioned above is also obtained in a different context, namely
from requiring the absence of low-energy charge and color breaking minima
deeper than the standard vacuum 32. In fact, on these grounds, the dilaton-
dominated limit is excluded not only for a µ term generated through the Kähler
potential but for any possible mechanism solving the µ problem. The results
indicate that the whole free parameter space (m3/2, B, µ) is excluded after
imposing the present experimental data on the top mass. Again this rests on
the assumption of radiative symmetry breaking with nothing but the MSSM
in between the weak scale and the superstring scale.

Dilaton/Moduli SUSY breaking

In general the moduli fields Ti may also contribute to SUSY breaking, i.e.
F i 6= 0 in (46), and therefore their effects on soft parameters must also be
included 6,8,33,19,34. In this sense it is interesting to note that explicit possible
scenarios of SUSY breaking by gaugino condensation in superstrings, when
analyzed at the one–loop level, lead to the mandatory inclusion of the moduli
in the game (in fact the moduli are the main source of SUSY breaking in
these cases) 35. Since different compactification schemes give rise to different
expressions for the moduli-dependent part of the Kähler potential (43), the
computation of the bosonic soft parameters will be model dependent. The
results are discussed below in the context of some specific superstring models.

3.2 Superstring models

To illustrate the main features of mixed dilaton/moduli SUSY breaking, we
will concentrate mainly on the case of diagonal moduli and matter metrics.
For instance, under this assumption the parametrization (46) is simplified to

FS =
√

3Cm3/2K̂
−1/2

SS
sin θe−iγS ,

F i =
√

3Cm3/2K̂
−1/2

ii
cos θΘie

−iγi , (58)

where
∑

i Θ2

i = 1. Although this is the generic case e.g. in most orbifolds,
off–diagonal metrics are present in general in Calabi–Yau compactifications.
This may lead to FCNC effects in the low–energy effective N=1 softly bro-
ken Lagrangian. The analysis of soft SUSY-breaking parameters in Calabi–
Yau compactifications is therefore more involved and can be found in 36 using
parametrization (46). A similar analysis for the few orbifolds with off–diagonal
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metrics was carried out in 34. Some comments about the “off-diagonal” results
will be made below. Also in the case of orbifold compactifications with contin-
uous Wilson lines off-diagonal moduli metrics arise, due to the moduli–Wilson
line mixing. However, this analysis turns out to be simple 37 and the results
are similar to the ones studied below in the diagonal case.

Since the moduli part of the Kähler potential (43) has been computed for
(0, 2) symmetric Abelian orbifolds, we will concentrate here on these models.
They contain generically three T -type moduli (the exceptions are the orbifolds
Z3, Z4 and Z ′

6, which have 9, 5 and 5 respectively, and are precisely the ones
with off-diagonal metrics) and, at most, three U -type moduli. We will denote
them collectively by Ti, where e.g. Ti = Ui−3; i = 4, 5, 6. For this class of
models the Kähler potential has the form

K = − log(S + S∗) −
∑

i

log(Ti + T ∗
i ) +

∑

α

|Cα|2Πi(Ti + T ∗
i )ni

α . (59)

Here ni
α are (zero or negative) fractional numbers usually called “modular

weights” of the matter fields Cα. For each given Abelian orbifold, indepen-
dently of the gauge group or particle content, the possible values of the mod-
ular weights are very restricted. For a classification of modular weights for all
Abelian orbifolds see 38. The piece proportional to Zαβ in (43) has been shown
to be present in Calabi–Yau compactifications and orbifolds. In particular, in
the case of orbifolds, such a term arises when the untwisted sector has at least
one complex–structure field U and has been explicitly computed. We will ana-
lyze separately this case below, as well as the associated µ and B parameters,
whereas we will concentrate here on the other bosonic soft parameters. Plug-
ging the particular form (59) of the Kähler potential and the parametrization
(58) in (22) and (23) we obtain the following results for the scalar masses and
trilinear parameters 34,33,19:

m2

α = m2

3/2

(
1 + 3C2 cos2 θ ~nα. ~Θ2

)
+ V0 , (60)

Aαβγ = −
√

3Cm3/2

(
sin θe−iγS + cos θ

6∑

i=1

e−iγiΘi [1

+ ni
α + ni

β + ni
γ − (Ti + T ∗

i )∂i log Yαβγ

])
. (61)

It is easy to check that the results (49) and (51) are recovered in the limit where
cos θ → 0. Notice that neither the scalar (60) nor the gaugino masses (48) have
any explicit dependence on S or Ti: they only depend on the gravitino mass
and the goldstino angles. This is one of the advantages of a parametrization in
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terms of such angles. Although in the case of the A-parameter an explicit Ti-
dependence may appear in the term proportional to ∂i log Yαβγ , it disappears
in several interesting cases34. Using the above information, we can now analyze
the structure of soft parameters available in Abelian orbifolds.

In the dilaton-dominated case (cos θ = 0) the soft parameters are universal,
as already studied in the previous section. However, in general, they show a
lack of universality due to the modular weight dependence (see (60) and (61)).
So, even with diagonal matter metrics, FCNC effects may appear. However,
we recall that the low-energy running of the scalar masses has to be taken into
account. In particular, in the squark case, for gluino masses heavier than (or
of the same order as) the scalar masses at the boundary scale, there are large
flavour-independent gluino loop contributions which are the dominant source
of scalar masses (see (17)). We will show below that this situation is very
common in orbifold models. The above effect can therefore help in fulfilling
the FCNC constraints.

Another feature of the case under study is that, depending on the goldstino
direction, tachyons may appear. For cos2 θ ≥ 1/3, the goldstino direction
cannot be chosen arbitrarily if one is interested in avoiding tachyons (see (60)).
Nevertheless, having a tachyonic sector is not necessarily a problem, it may
even be an advantage 34. In the case of superstring GUTs (or the standard
model with extra U(1) interactions), the negative squared mass may just induce
gauge symmetry breaking by forcing a VEV for a particular scalar, GUT-
Higgs field, in the model. The latter possibility provides us with interesting
phenomenological consequences: the breaking of SUSY could directly induce
further gauge symmetry breaking.

Finally, let us consider three particles Cα, Cβ and Cγ , coupled through
a Yukawa Yαβγ . They may belong both to the untwisted (U) sector or to a
twisted (T) sector, i.e. we consider couplings of the type UUU, UTT, TTT.
Then, using the above formulae (60) and (48), with negligible V0, one finds 34

that in general for any choice of goldstino direction

m2

α + m2

β + m2

γ ≤ |Ma|2 = 3m2

3/2
sin2 θ . (62)

Remarkably, the same sum rule is fulfilled even in the presence of off-diagonal
metrics, as it is the case of the orbifolds Z3, Z4 and Z ′

6
. The three scalar

mass eigenvalues will be in general non-degenerate, which in turn may induce
FCNC. This can be automatically avoided in the dilaton dominated limit or
under special conditions (for instance, when Ŵ does not depend on the moduli,
a no-scale scenario arises and the mass eigenvalues vanish). The same problem
is present in Calabi-Yau compactifications, where again the mass eigenvalues
are typically non-degenerate. Besides, the sum rule (62) is violated in general
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36. Coming back to the orbifold case, notice that the above sum rule implies
that on average scalars are lighter than gauginos. For small sin θ, some partic-
ular scalar mass may become bigger than the gaugino mass, but in that case
at least one of the other scalars involved in the sum rule would be forced to
have a negative squared mass. This situation is quite dangerous in the con-
text of standard model four-dimensional superstrings, since some observable
particles, like Higgses, squarks or sleptons, could be forced to acquire large
VEVs (of order the superstring scale). If the above sum rule is applied and
squared soft masses are (conservatively) required to be non-negative in order
to avoid instabilities of the scalar potential, then the tree level soft masses of
observable scalars are constrained to be always smaller than gaugino masses
at the boundary scale:

mα < Ma . (63)

In turn, this implies that, at low-energy (∼ MZ), the masses of gluinos, sleptons
and squarks (except stops and left sbottom) are ordered as

ml < mq ≃ Mg , (64)

where gluinos are slightly heavier than scalars. Therefore, in spite of the differ-
ent set of (non-universal) soft scalar masses, the low-energy phenomenological
predictions of the mixed dilaton/moduli SUSY breaking become qualitatively
similar to those of the pure dilaton-dominated SUSY breaking. This holds
especially for the squark masses, as follows e.g. from (63) and (17). In the
case of sleptons, which do not feel gluino loop effects, the boundary values of
the soft masses (63) can be relatively more important at low-energy, and larger
deviations from the numerical results of (56) can be obtained. Analyses of the
low-energy predictions of the dilaton/moduli scenario taking account of the
radiative symmetry breaking can be found in 6,28,39.

Before concluding, we recall that exceptions to the above pattern (63),
(64) can arise in several situations 34. For instance, since the total squared
Higgs masses receive a positive contribution µ2, the corresponding soft masses
may be allowed to be negative: in this case the restrictions from the sum rule
would be relaxed. Another example concerns MSSM Yukawa couplings that
arise effectively from higher dimension operators: in this case the three-particle
sum rule itself may not hold. Finally, a departure from relations (63) and (64)
can also arise when both scalar and gaugino masses vanish at tree level. Such
a vanishing can happen in the fully moduli-dominated SUSY breaking, e.g. if
SUSY breaking is equally shared among T1, T2, T3 and one consider untwisted
particles: then superstring loop effects become important and tend to make
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scalars heavier than gauginos 6. In any event, we stress again that potential
violations of the pattern in (63) and (64) can occur only when SUSY breaking
is mainly moduli dominated (specifically, cos2 θ ≥ 2/3), since only in this case
the gaugino masses can decrease below m3/2 and possibly become lighter than
some scalar mass.

The B parameter and the µ problem

As already discussed in section 2.1, the two mechanisms to solve the µ problem
in the context of supergravity are naturally present in superstring models. We
will concentrate here on the case in which µ arises from a bilinear term in the
Kähler potential (3). The alternative mechanism which generates µ from the
superpotential, as in (16), may also be present in orbifolds, but the results
are more model dependent. They can be found in 34. We recall that, in any
orbifold with at least one complex-structure field U , the Kähler potential of
the untwisted sector possesses the structure Z(Ti, T

∗
i )C1C2 +h.c. 14,15 and can

therefore generate a µ term. Specifically, the ZN orbifolds based on Z4, Z6,
Z8, Z ′

12 and the ZN ×ZM orbifolds based on Z2×Z4 and Z2×Z6 do all have a
U -type field in (say) the third complex plane. In addition, the Z2×Z2 orbifold
has U fields in the three complex planes. In all these models the piece of the
Kähler potential involving the moduli and the untwisted matter fields C1,2 in
the third complex plane has the form

K3 = − log [(T3 + T ∗
3
)(U3 + U∗

3
) − (C1 + C∗

2
)(C∗

1
+ C2)] (65)

≃ − log(T3 + T ∗
3
) − log(U3 + U∗

3
) +

(C1 + C∗
2
)(C∗

1
+ C2)

(T3 + T ∗
3
)(U3 + U∗

3
)

. (66)

Now, from the expansion shown in (66), one can easily read off the functions
Z, K̃1, K̃2 associated to C1 and C2:

Z = K̃1 = K̃2 =
1

(T3 + T ∗
3
)(U3 + U∗

3
)

. (67)

Let us assume that the MSSM can be obtained from a superstring model of
the kind mentioned above and let us identify the fields C1 and C2 with the
electroweak Higgs fields H1 and H2. Plugging back the expressions (67) in (24)
and (28) with µ = 0, and using the parametrization (58), one can compute µ
and B for this interesting class of models 34:

µ̂ = m3/2

[
1 +

√
3C cos θ(eiγ3Θ3 + eiγ6Θ6)

]
, (68)

Bµ̂ = 2m2

3/2

[
1 +

√
3C cos θ(cos γ3Θ3 + cos γ6Θ6)

+ 3C2 cos2 θ cos(γ3 − γ6)Θ3Θ6

]
+ V0 . (69)
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Notice that, in the limit where cos θ → 0, the results in (57) are recovered. In
addition, we recall from (60) that the soft masses are

m2

H1
= m2

H2
= m2

3/2

[
1 − 3C2 cos2 θ(Θ2

3 + Θ2
6)
]

+ V0 . (70)

In general, the quadratic part of the Higgs potential after SUSY breaking has
the form (see(21))

V2 = (m2

H1
+ |µ̂|2)|Ĥ1|2 + (m2

H2
+ |µ̂|2)|Ĥ2|2 + (Bµ̂Ĥ1Ĥ2 + h.c.) , (71)

where we recall that Ĥ1 and Ĥ2 are the canonically normalized Higgs fields.
In the specific case under consideration, from (68), (69) and (70) we find the
remarkable result that the three coefficients in V2 are equal, i.e.

m2

H1
+ |µ̂|2 = m2

H2
+ |µ̂|2 = Bµ̂ . (72)

so that V2 has the simple form

V2 = Bµ̂ (Ĥ1 + Ĥ∗
2
)(Ĥ∗

1
+ Ĥ2) . (73)

and therefore tanβ = <Ĥ2>

<Ĥ1>
= −1. Of course, this corresponds to the bound-

ary condition on the scalar potential at the superstring scale: at lower energies
the renormalization group equations should be used. Although the common
value of the three coefficients in (72) depends on the Goldstino direction via
the parameters cos θ, Θ3, Θ6,. . . (see e.g. the expression of Bµ̂ in (69)), we
stress that the equality itself and the form of V2 hold independently of the
Goldstino direction.

Starting from such ‘superstringy’ boundary conditions for the MSSM pa-
rameters, one can explore their consistency with radiative electroweak-symmetry
breaking 31 (see also 40). One finds that consistency with the measured value
of the top-quark mass cannot be achieved in the dilaton-dominated scenario
(as already mentioned in section 3.1). The only SUSY-breaking scenario com-
patible with such constraints requires a suppressed dilaton contribution and
important (often dominant) contributions from the T3, U3 moduli.

4 Final Comments and Outlook

It is worth remarking that most of the above results for soft terms in super-
string models refer to certain simple perturbative heterotic compactifications.
In addition, it is assumed that the goldstino is a fermionic partner of some
combination of the dilaton and/or the moduli fields. Recently some informa-
tion about the non-perturbative regime in superstring theory has been ob-
tained in terms of the S-dualities 41 of the theory. All superstring theories
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seem to correspond to some points in the parameter space of a unique eleven-
dimensional underlying theory, M-theory 42. Although the structure of this
theory is largely unknown, some preliminary attempts have been made to ex-
tract some information of phenomenological interest. A scenario to understand
the difference between the GUT scale and the superstring scale has been put
forward 43. Supersymmetry breaking and other phenomenological issues have
also been explored within this context in 44 . Studies in progress concerning
non-perturbative superstring vacua with N = 1 SUSY will certainly bring us
new surprises.
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29. See e.g. L.E. Ibáñez, hep-th/9505098, Proc. of Strings 95, World Scien-

tific (1995), and references therein.
30. J.A. Casas, Phys. Lett. B384 (1996) 103.
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38. L.E. Ibáñez and D. Lüst, Nucl. Phys. B382 (1992) 305.
39. C.-H. Chen, M. Drees and J.F. Gunion, Phys. Rev. D55 (1997) 330; Y.

Kawamura, S. Khalil and T. Kobayashi, hep-ph/9703239; A. Love and
P. Stadler, hep-ph/9709234.

40. Y. Kawamura, T. Kobayashi and M. Watanabe, DPSU-97-5, hep-
ph/9609462.
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