28 research outputs found
ERK 1/2 activation does not contribute to increased survival mediated by bone marrow cells after 90% partial hepatectomy in wistar rats
We investigated the influence of bone marrow cells upon activation of ERK ½ in an animal model of 90% PH. Phosphorylated ERK 1/2 was evaluated by western blot. No differences were found between the groups. Thus, increased survival does not appear to be mediated by ERK 1/2 activation
Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia
Objetivo: Investigar o efeito da hipóxia intermitente com um modelo de apneia obstrutiva do sono (AOS) sobre a expressão de uncoupling protein-2 (UCP2), assim como sobre perfis glicêmicos e lipídicos, em camundongos C57BL. Métodos: Camundongos C57BL machos foram expostos a hipóxia intermitente ou hipóxia simulada (grupo controle) 8 h/dia durante 35 dias. A condição de hipóxia intermitente envolveu a exposição dos camundongos a uma atmosfera de 92% de N e 8% de CO2 por 30 s, com redução progressiva de fração de O2 inspirado até 8 ± 1%, seguida por exposição a ar ambiente por 30 s e repetições do ciclo (480 ciclos no período experimental de 8 h). Os pâncreas foram dissecados para isolar as ilhotas. Foi realizada PCR em tempo real utilizando o método TaqMan. Resultados: A expressão do mRNA da UCP2 nas ilhotas pancreáticas foi 20% maior no grupo controle que no grupo hipóxia (p = 0,11). A insulina sérica de jejum foi maior no grupo hipóxia do que no grupo controle (p = 0,01). O modelo de avaliação da homeostase de resistência à insulina indicou que, em comparação com os camundongos controle, aqueles expostos à hipóxia intermitente apresentaram 15% menor resistência à insulina (p = 0,09) e 21% maior função das células beta (p = 0,01). A coloração das ilhotas pancreáticas por imuno-histoquímica não mostrou diferenças significativas entre os grupos em termos da área ou da intensidade das células alfa e beta, marcadas por insulina e glucagon. Conclusões: Segundo nosso conhecimento, esta é a primeira descrição do efeito da hipóxia intermitente sobre a expressão da UCP2. Nossos achados sugerem que UCP2 regula a produção de insulina na AOS. Futuras investigações sobre o papel da UCP2 no controle glicêmico em pacientes com AOS são justificadas.Objective: To investigate the effect of intermittent hypoxia—a model of obstructive sleep apnea (OSA)—on pancreatic expression of uncoupling protein-2 (UCP2), as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group) or to a sham procedure (normoxia group). The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period). Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11). Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01). The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09) and 21% higher pancreatic β-cell function (p = 0.01). Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted
When is injury potentially reversible in a lung ischemia-reperfusion model?
Objective: To verify the impact of ischemic time on lung cell viability in an experimental model of lung ischemia–reperfusion (IR) injury and its repercussion on lung performance after reperfusion. Methods: Twenty-four animals were subjected to selective clamping of the left pulmonary artery and divided into four groups ( n = 6) according to ischemic time: 15 (IR15), 30 (IR30), 45 (IR45), and 60 min (IR60). All animals were observed for 120 min after reperfusion. The hemodynamics, arterial blood gases measurements, and histologic changes were analyzed. Immunofluorescence assays for caspase 3 and annexin V were performed. Lipid peroxidation was assessed by thiobarbituric acid–reactive substances, and caspase 3 activity was assessed by colorimetric extract. Results: The partial pressure of arterial oxygen significantly decreased at the end of the observation period in the IR30, IR45, and IR60 groups ( P < 0.05). The final mean arterial pressure significantly decreased in the IR60 group ( P < 0.05). We observed a significant increase in caspase 3 activity and caspase 3–positive cells by immunofluorescence in the IR45 group compared with the other groups ( P < 0.05). Additionally, there was an increase in necrotic cells assessed by annexin V in the IR60 group. The histologic score did not show differences among the different groups. Conclusions: The degree of cell damage had a negative impact on lung performance. Sixty minutes of lung ischemia and posterior reperfusion resulted in an increased number of necrotic cells, suggesting that these cells may not be able to reverse the effects of the IR injury because of the lack of viable cells