39 research outputs found

    Использование интернет-технологий для активизации процесса развития въездного туризма в РФ (на примере Томской области)

    Get PDF
    РЕФЕРАТ Объем работы – 102., рисунков – 7 , таблиц – 2, источников –61 . ИСПОЛЬЗОВАНИЕ ИНТЕРНЕТ ТЕХНОЛОГИЙ ДЛЯ АКТИВИЗАЦИИ ПРОЦЕССА РАЗВИТИЯ ВЪЕЗДНОГО ТУРИЗМА В РФ (НА ПРИМЕРЕ ТОМСКОЙ ОБЛАСТИ) Ключевые слова: интернет – технологии, туризм, въездной туризм, порталы. Актуальность Предмет исследования – исследования является интернет-технологии для повышения привлекательности региона для туристов. Объект исследования – интернет технологии. Проблему исследования Цель данной работы – исследования заключается в разработке предложений по совершенствованию туристского портала томской области. Для достижения поставленной цели определены следующие задачи: • Дать понятие и рассмотреть интернет технологии; • Рассмотреть состояние въездного туризма в зарубежных странах; • ПESSAY Volume of work - 102, figures - 7, tables - 2, sources -61. USING INTERNET TECHNOLOGY TO ENHANCE THE PROCESS OF DEVELOPMENT OF TOURISM IN THE RUSSIAN FEDERATION (THE EXAMPLE OF THE TOMSK REGION) Keywords: Internet - technology, tourism, inbound tourism portals. Relevance Subject of research - the study is an Internet-based technologies to enhance the attractiveness of the region for tourists. The object of study - Internet technology. research problem The purpose of this work - the research is to develop proposals for improving the tourist portal of the Tomsk region. To achieve this goal the following tasks: • Writing the concept and consider the Internet technology; • Consider the state of tourism in foreign countries; • Analyze the impact of Internet technology on the inbound t

    MixPro: Simple yet Effective Data Augmentation for Prompt-based Learning

    Full text link
    Prompt-based learning reformulates downstream tasks as cloze problems by combining the original input with a template. This technique is particularly useful in few-shot learning, where a model is trained on a limited amount of data. However, the limited templates and text used in few-shot prompt-based learning still leave significant room for performance improvement. Additionally, existing methods using model ensembles can constrain the model efficiency. To address these issues, we propose an augmentation method called MixPro, which augments both the vanilla input text and the templates through token-level, sentence-level, and epoch-level Mixup strategies. We conduct experiments on five few-shot datasets, and the results show that MixPro outperforms other augmentation baselines, improving model performance by an average of 5.08% compared to before augmentation.Comment: Under review at the Frontiers of Computer Science (https://www.springer.com/journal/11704/); 14 pages, 4 figures, 5 table

    Fecal microbial gene transfer contributes to the high-grain diet-induced augmentation of aminoglycoside resistance in dairy cattle

    No full text
    ABSTRACTA high-grain (HG) diet can rapidly lower the rumen pH and thus modify the gastrointestinal microbiome in dairy cattle. Although the prevalence of antibiotic resistance is strongly linked with the gut microbiome, the influences of HG diet on animals’ gut resistome remain largely unexplored. Here, we examined the impact and mechanism of an HG diet on the fecal resistome in dairy cattle by metagenomically characterizing the gut microbiome. Eight lactating Holstein cattle were randomly allocated into two groups and fed either a conventional (CON) or HG diet for 3 weeks. The fecal microbiome and resistome were significantly altered in dairy cattle from HG, demonstrating an adaptive response that peaks at day 14 after the dietary transition. Importantly, we determined that feeding an HG diet specifically elevated the prevalence of resistance to aminoglycosides (0.11 vs 0.24 RPKG, P < 0.05). This diet-induced resistance increase is interrelated with the disproportional propagation of microbes in Lachnospiraceae, indicating a potential reservoir of aminoglycosides resistance. We further showed that the prevalence of acquired resistance genes was also modified by introducing a different diet, likely due to the augmented frequency of lateral gene transfer (LGT) in microbes (CON vs HG: 254 vs 287 taxa) such as Lachnospiraceae. Consequently, we present that diet transition is associated with fecal resistome modification in dairy cattle and an HG diet specifically enriched aminoglycosides resistance that is likely by stimulating microbial LGT.IMPORTANCEThe increasing prevalence of antimicrobial resistance is one of the most severe threats to public health, and developing novel mitigation strategies deserves our top priority. High-grain (HG) diet is commonly applied in dairy cattle to enhance animals’ performance to produce more high-quality milk. We present that despite such benefits, the application of an HG diet is correlated with an elevated prevalence of resistance to aminoglycosides, and this is a combined effect of the expansion of antibiotic-resistant bacteria and increased frequency of lateral gene transfer in the fecal microbiome of dairy cattle. Our results provided new knowledge in a typically ignored area by showing an unexpected enrichment of antibiotic resistance under an HG diet. Importantly, our findings laid the foundation for designing potential dietary intervention strategies to lower the prevalence of antibiotic resistance in dairy production

    Numerical Simulation and Accuracy Verification of Surface Morphology of Metal Materials Based on Fractal Theory

    No full text
    This paper presents a numerical simulation method to determine the surface morphology characteristics of metallic materials. First, a surface profiler (NV5000 5022s) was used to measure the surface, and the morphology data thereof were characterized. Second, fractal theory was used to simulate the surface profile for different fractal dimensions D and scale coefficients G, and statistical analyses of different surface morphologies were carried out. Finally, the fractal dimension D of the simulated morphology and the actual morphology were compared. The analysis showed that the error of fractal dimension D between the two morphologies was less than 10%; meanwhile, the comparison values of the characterization parameters of the simulated morphology and the actual morphology were approximately equal, and the errors were below 6%. Therefore, the current method used to evaluate the surface morphologies of parts processed by the grinding/milling method can be replaced by the simulated method using the corresponding parameters. This method makes it possible to theorize about the surface morphologies of machined parts, and provides a theoretical basis and reference value for the surface morphology design of materials, with the potential to improve the assembly quality of products

    A High Precision Modeling Technology of Material Surface Microtopography and Its Influence on Interface Mechanical Properties

    No full text
    In order to accurately and effectively obtain the contact performance of the mating surface under the material surface topography characteristics, a numerical simulation method of rough surface based on the real topography characteristics and a multi-scale hierarchical algorithm of contact performance is studied in this paper. Firstly, the surface topography information of materials processed by different methods was obtained and characterized by a measuring equipment; Secondly, a non-Gaussian model considering kurtosis and skewness was established by Johnson transform based on Gaussian theory, and a rough surface digital simulation method based on real surface topography was formed; Thirdly, a multi-scale hierarchical algorithm is given to calculate the contact performance of different mating surfaces; Finally, taking the aeroengine rotor as the object, the non-Gaussian simulation method was used to simulate the mating surfaces with different topographies, and the multi-scale hierarchical algorithm was used to calculate the contact performance of different mating surfaces. Analysis results showed that the normal contact stiffness and elastic–plastic contact area between the mating surfaces of assembly 1 and assembly 2 are quite different, which further verifies the feasibility of the method. The contents of this paper allow to perform the fast and effective calculation of the mechanical properties of the mating surface, and provide a certain analysis basis for improving the surface microtopography characteristics of materials and the product performance

    Influence of Monocalcium Phosphate on the Properties of Bioactive Magnesium Phosphate Bone Cement for Bone Regeneration

    No full text
    Bone defects occurring for various reasons can lead to deformities and dysfunctions of the human body. Considering the need for clinical applications, it is essential for bone regeneration to exploit a scaffold with bioactive bone cement. In this study, we fabricated bioactive magnesium phosphate bone cement (BMPC) at room temperature; then, it was set at to °C and 100% humidity for 2 h. The process was as follows: Simulating a clinical environment, magnesium oxide (MgO) was formed by calcining basic magnesium carbonate (Mg2(OH)2CO3). MgO, potassium dihydrogen phosphate (KH2PO4) and carboxymethyl chitosan (C20H37N3O14, CMC) were mixed to form magnesium phosphate bone cement (MPC); then, monocalcium phosphate (Ca(H2PO4)2) was added to neutralize the alkaline product after MPC hydration to fabricate bioactive magnesium phosphate bone cement (BMPC). The influence of the doped content of Ca(H2PO4)2 on the properties of bone cement was discussed. The results showed that Ca(H2PO4)2 and CMC can adjust the setting time of bone cement to between 8 and 25 min. The compressive strength increased first and then decreased. After 48 h without additional pressure, the compressive strength reached the maximum value, which was about 38.6 MPa. Ca(H2PO4)2 and CMC can play a synergistic role in regulating the properties of BMPC. The BMPC was degradable in the simulated body fluid (SBF). The results of the cytotoxicity experiment and laser confocal microscopy experiment indicated that BMPC fabricated at room temperature had better biocompatibility and degradability, which was more consistent with clinical operation requirements. BMPC is a promising orthopedic material and is suitable for repairing bone defects

    Iron(III)-Modified Tungstophosphoric Acid Supported on Titania Catalyst: Synthesis, Characterization, and Friedel–Craft Acylation of <i>m</i>‑Xylene

    No full text
    The Friedel–Craft acylation of <i>m</i>-xylene with benzoyl chloride over iron-modified tungstophosphoric acid supported on titania was investigated. It was found that FeTPA/TiO<sub>2</sub> catalyst displayed excellent catalytic performance for this reaction. Furthermore, a series of catalysts were prepared and characterized by FT-IR, XRD, BET, NH<sub>3</sub>-TPD, and Py-IR. The results indicated that both the Lewis acidity and the textural properties presented significant influences on their catalytic performance. Moreover, the influence of catalyst calcination temperature to the above reaction was also studied. The reaction parameters, including reaction temperature, catalyst dose, and molar ratio of <i>m</i>-xylene to benzoyl chloride, were optimized, and a 95.1% yield of 2,4-dimethylbenzophenone was obtained under optimal conditions. Finally, the kinetics of the benzoylation of <i>m</i>-xylene over 30% FeTPA/TiO<sub>2</sub> was established
    corecore