2,124 research outputs found

    The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817

    Full text link
    Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10āˆ’3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ~1014 G. If the ellipticity is smaller than 10āˆ’4, B p is constrained to the level of ~109ā€“1011 G. These conclusions weakly depend on the adoption of the NS equation of state

    Extended Kalman Filter based Resilient Formation Tracking Control of Multiple Unmanned Vehicles Via Game-Theoretical Reinforcement Learning

    Get PDF
    In This Paper, We Discuss the Resilient Formation Tracking Control Problem of Multiple Unmanned Vehicles (MUV). a Dynamic Leader-Follower Distributed Control Structure is Utilized to Optimize the Performance of the Formation Tracking. for the Follower of the MUV, the Leader is a Cooperative Unmanned Vehicle, and the Target of Formation Tracking is a Non-Cooperative Unmanned Vehicle with a Nonlinear Trajectory. Therefore, an Extended Kalman Filter (EKF) Observer is Designed to Estimate the State of the Target. Then the Leader of the MUV is Adjusted Dynamically According to the State of the Target. in Order to Describe the Interactions between the Follower and Dynamic Leader, a Stackelberg Game Model is Constructed to Handle the Hierarchical Decision Problems. at the Lower Layer, Each Follower Responds by Observing the Leader\u27s Strategy, and the Potential Game is Used to Prove a Nash Equilibrium among All Followers. at the Upper Layer, the Dynamic Leader Makes Decisions Depending on the Response of All Followers to Reaching the Stackelberg Equilibrium. Moreover, the Stackelberg-Nash Equilibrium of the Designed Game Theoretical Model is Proven. a Novel Reinforcement Learning-Based Algorithm is Designed to Achieve the Stackelberg-Nash Equilibrium of the Game. Finally, the Effectiveness of the Method is Verified by a Variety of Formation Tracking Simulation Experiments

    First identification of primary nanoparticles in the aggregation of HMF

    Get PDF
    5-Hydroxymethylfurfural [HMF] is an important intermediate compound for fine chemicals. It is often obtained via hydrothermal treatment of biomass-derived carbohydrates, such as fructose, glucose and sucrose. This study investigates the formation of carbonaceous spheres from HMF created by dehydration of fructose under hydrothermal conditions. The carbonaceous spheres, ranging between 0.4 and 10 Ī¼m in diameter, have granulated morphologies both on the surface and in the interior. The residual solution is found to contain a massive number of primary nanoparticles. The chemical structure of the carbonaceous spheres was characterised by means of FTIR and NMR spectroscopies. Based on these observations, a mechanism involving the formation and aggregation of the nanoparticles is proposed. This mechanism differs considerably from the conventional understanding in the open literature

    The spliceosome-associated protein CWC15 promotes miRNA biogenesis in Arabidopsis

    Get PDF
    MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy ofDNA-dependent RNA polymerases atMIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient primiRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimalmiRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis
    • ā€¦
    corecore