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Extended Kalman Filter Based Resilient Formation
Tracking Control of Multiple Unmanned Vehicles

via Game-Theoretical Reinforcement Learning
Lei Xue, Member, IEEE, Bei Ma, Jian Liu, Member, IEEE, Chaoxu Mu, Senior Member, IEEE,

Donald C. Wunsch, Fellow, IEEE,

Abstract—In this paper, we discuss the resilient formation
tracking control problem of multiple unmanned vehicles (MUV).
A dynamic leader-follower distributed control structure is utilized
to optimize the performance of the formation tracking. For the
follower of the MUV, the leader is a cooperative unmanned
vehicle, and the target of formation tracking is a non-cooperative
unmanned vehicle with a nonlinear trajectory. Therefore, an
extended Kalman filter (EKF) observer is designed to estimate
the state of the target. Then the leader of the MUV is adjusted
dynamically according to the state of the target. In order to
describe the interactions between the follower and dynamic
leader, a Stackelberg game model is constructed to handle the
hierarchical decision problems. At the lower layer, each follower
responds by observing the leader’s strategy, and the potential
game is used to prove a Nash equilibrium among all followers.
At the upper layer, the dynamic leader makes decisions depending
on the response of all followers to reaching the Stackelberg
equilibrium. Moreover, the Stackelberg-Nash equilibrium of the
designed game theoretical model is proven. A novel reinforcement
learning-based algorithm is designed to achieve the Stackelberg-
Nash equilibrium of the game. Finally, the effectiveness of the
method is verified by a variety of formation tracking simulation
experiments.

Index Terms—extended Kalman filter; leader-switching; for-
mation tracking; Stackelberg-Nash equilibrium; reinforcement
learning

I. INTRODUCTION

IN recent years, unmanned vehicles are widely used in
military and civil fields [1]–[5]. Therefore, the cooperative

control of the MUV becomes one of the most active research
problems, such as formation control, coordination control,
and target tracking. The formation tracking problem can be
stated as MUV needs to track a given target trajectory while
maintaining the desired formation shape to accomplish a
specific task. Research on this problem can be applied to many
fields, such as cooperative reconnaissance, search and rescue
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missions, forest fire detection, and environmental monitoring
[6]–[9].

Most of the formation tracking problems of the MUV rely
upon the leader-follower structure [10]–[13], which assumes
the presence of a special vehicle, referred to as the leader.
The leader has access to the target trajectory to be transmitted
to the whole system. Therefore, the leader needs to estimate
the state of the target at the next time step by the historical
information and observations of the target. One of the most
classical methods for target trajectory prediction is the Kalman
filter (KF) algorithm [14], which has excellent estimation
results for linear systems. The KF was used to estimate the
parameters during real-time formation tracking in [15] and
[16]. The KF can estimate the parameters of linear system
models. As to a nonlinear trajectory, the extended Kalman
filter (EKF) was designed to linearize the nonlinear function
for linear approximation [17]. In addition, the convergence
of the EKF algorithm for nonlinear discrete systems was
discussed in [18], and sufficient conditions to ensure local
asymptotic convergence were obtained. Inspired by the above
work, an EKF algorithm is designed to estimate the nonlinear
trajectory of the target, which provides a guarantee for the
implementation of the formation tracking problem.

Leader selection is crucial in the leader-follower formation
tracking problem because it significantly affects the perfor-
mance of formation tracking for the multi-agent system (MAS)
[19]–[24]. Under some circumstances, the leader is considered
to be a particular member chosen by the systems at the begin-
ning of the task. However, both [25] and [26] demonstrated
that the system performance can be optimized by online leader
selection. A suitable error function was defined to represent
the tracking performance of MAS. Subsequently, a distributed
adaptive algorithm was designed for selecting the optimal
leader among the current neighbors. In [27], an emotion-based
leader selection model was proposed, in which robots can
choose the leader according to their affection state. In [28],
a supermodel game was introduced to solve the problem of
selecting k leaders in a second-order MAS. Therefore, an
online leader selection algorithm is designed to optimize the
performance of formation tracking by online leader selection.

Game theory is an effective tool to deal with cooperative
control of MAS. In [29], the relationship between game theory
and cooperative control was elaborated, as well as how game
theory can be combined to solve cooperative control problems.
In [30], distributed multi-agent control, optimal control theory,
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and game theory were combined to address multi-agent dy-
namic graph games. For a dynamic leader-follower formation
tracking distributed control structure in our study, there are
two kinds of goals, which are cooperative and non-cooperative
goals. The cooperative goal is the leader. The follower follows
the leader in the MUV system. The non-cooperative goals are
targets of the system, i.e., nonlinear trajectories that need to be
estimated and predicted by the leader. In [31], a hierarchical
formation control structure was constructed by dividing large-
scale agents into three categories. The Stackelberg game
[32]–[34] is an effective tool for describing the hierarchical
decision-making process of MAS with cooperative and non-
cooperative goals. Therefore, a Stackelberg game is designed
to describe the interactions between the vehicles of the MUV
system.

Due to the computational complexity of the game equilib-
rium, many studies have solved the game model by designing
reinforcement learning-based game strategies. In [32], a two-
level value iteration-based integral reinforcement learning (VI-
IRL) algorithm was developed to overcome the difficulty of
computing equilibrium points. In [35], a novel actor-critic
reinforcement learning approach was designed to solve two
coupled equations of the mean-field game. In [36]–[38], game
theory and reinforcement learning were combined to design
reinforcement learning-based strategies. Therefore, a rein-
forcement learning-based algorithm is developed to achieve
the Stackelberg-Nash equilibrium of the game model.

In this paper, we study the formation tracking problem
of a MUV system in which the trajectory of the target
is nonlinear. A dynamic leader-follower distributed control
structure is constructed to optimize the formation tracking
process. Subsequently, the leader is switched online to improve
the tracking performance. Moreover, a Stackelberg game is
designed to illustrate the interactions between the dynamic
leaders and the followers, and the existence of Stackelberg-
Nash equilibrium is proven. Finally, a reinforcement learning-
based algorithm is developed to optimize the decision making
process of unmanned vehicles.

The main contributions of this paper can be summarized as
follows:

1) A real-time leader-switching algorithm is designed to
construct a dynamic leader-follower structure, which
improves the performance of dynamic target formation
tracking. Compared with [25] and [26], our nonlinear
target is estimated by the designed EKF observer.

2) A hierarchical decision problem is illustrated by con-
structing a Stackelberg game with a dynamic leader
and followers. Compared with [32], the existence of the
Stackelberg-Nash equilibrium is proven by introducing
an ordinal potential game.

3) A novel Q-learning algorithm is developed to reach
the Stackelberg-Nash equilibrium by introducing leader
switching and quadrant pre-determination in the tradi-
tional Q-learning algorithm.

The rest of our paper is organized as follows. Section
II introduces the formation tracking problem for the MUV
system and states the problem. In Section III, the EKF
observer is designed for state estimation of a nonlinear target.

Section IV designs a real-time leader-switching algorithm and
a Stackelberg game model. Section V develops the novel
reinforcement learning-based algorithm for solving the game
model. Section VI gives some simulation examples to illustrate
the effectiveness of the game theoretical methods. Finally,
Section VII gives the conclusion.

II. PROBLEM FORMULATION

In this section, the model of the MUV system is introduced.
Then the objective of formation tracking is established. Fi-
nally, the formation tracking problem is transformed into an
optimization problem by combining the desired objectives.

A. System Model

Fig. 1. The absolute coordiignate system of the MUV system.

All vehicles in the system are considered as a set N =
{1, 2, ..., n} that can be divided into leaders and followers,
denoted by L and F, respectively. The topology of the system
is an undirected graph. The connectivity matrix is defined as
E = {eij | i, j ∈ N} with eij = 1 if ith vehicle can exchange
information with the jth vehicle and eij = 0 otherwise. Ni =
{j | eij = 1, j ∈ N} denotes the set of all neighbors of the ith
vehicle. The absolute coordinate system of this MUV system
is shown in Fig. 1.

According to the coordinate system shown in Fig. 1, the
dynamics model of the ith vehicle can be written as:

ẋi = vi cos θi
ẏi = vi sin θi
θ̇i = ϕi

(1)

where xi and yi represent the horizontal and vertical coordi-
nates of the ith vehicle, respectively. vi represents the velocity
of the ith vehicle. The θi and ϕi represent the heading angle
and turning rate of the ith vehicle, respectively. Therefore, the
position of the ith vehicle can be expressed as pi = (xi,yi).

Based on the dynamics of the ith vehicle, the motion
constraint is defined as:{

0 ≤ |vi| ≤ |vm|
0 ≤ |ϕi| ≤ |ϕm|

(2)

where |vm| and |ϕm| denote the modulus of the maximum
speed and maximum turning rate of the ith vehicle, respec-
tively.
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Fig. 2. Schematic of the nonlinear target formation tracking problem.

B. Problem Statement
As shown in Fig. 2, an observer is designed to estimate the

nonlinear trajectory. Then the vehicles of the MUV system are
classified into leaders and followers by the leader selection
algorithm. In addition, a Stackelberg game model of the for-
mation tracking problem is designed. Finally, a reinforcement
learning-based algorithm is designed to solve the game model.

For the formation tracking problem of the MUV system, to
improve the tracking performance and maintain the desired
formation shape, the following three objectives should be
satisfied:

Objective 1: Use the leader as a time variable to optimize
the performance of tracking the target and achieving the
desired formation.

Objective 2: The leader tracks the target with a nonlinear
trajectory, then the distance between the leader and the target
should converge to zero.

Objective 3: All vehicles should maintain the desired forma-
tion, which means that the relative distance between vehicles
should be given by d = {dij}, where dij denotes the
distance between the ith vehicle and the jth vehicle. Then
|∥pi − pj ||2 − dij | should converge to zero.

Combining the above three objectives, the objective function
fi of the ith vehicle can be defined as:

fi =


∥pi − pr∥2 +∑

j∈Ni
eij

∣∣∥pi − pj∥2 − dij
∣∣ , i ∈ L∑

j∈Ni
eij |∥pi − pj ||2 − dij |, i ∈ F

(3)

where pr is the target trajectory, L and F denote the set of
leaders and the set of followers, respectively.

An objective function fL for the set of leaders is designed
as follows:

fL =
∑
i∈L

fi, i ∈ L (4)

Therefore, the choice of the leader affects the speed of
convergence of the whole system to the desired formation.
Note that our paper studies the case where there is only one
leader in the set of leaders.

Based on the above analysis, the formation tracking problem
is converted into an optimization problem:

Problem: For each vehicle in the MUV system, the problem
is to find its strategy for achieving:

min fL
minj∈F fj

(5)

The observation of nonlinear trajectories is a prerequisite for
solving the optimization problem, which is exactly addressed
in Section III.

III. DESIGN OF EKF-BASED OBSERVER FOR TRACKING
THE NONLINEAR TRAJECTORY

For estimating the nonlinear trajectory of the target and
eliminating the noise of the environment, a suitable filtering
algorithm is designed to improve the performance of the
formation tracking. Therefore, a modified EKF-based observer
is designed and the convergence of the algorithm is proven
theoretically.

A. Linearization of Nonlinear Trajectory

Due to the turning rate constraint, the vehicle can only make
circular turns. Therefore, the nonlinear trajectory of the target
point is assumed to be a circle. The dynamic equation of the
nonlinear trajectory is shown as follows:{

ṗrx(t) = −wl · sin(wt)
ṗry(t) = wl · cos(wt) (6)

where prx(t) and pry(t) denote the horizontal and vertical
coordinates, respectively. pr(t) = (prx(t), pry(t)) is the target
coordinates. Both w and l are constants that affect the size of
the circular trajectory.

When using the sensor to measure the position, there exists a
measurement noise v (t) with a variance of σ1, where v (t) =
[v1 (t) , v2 (t)]

T . There is also a process noise z (t) with a
variance of σ2, where z (t) = [z1 (t) , z2 (t)]

T . Then (6) can
be rewritten as a nonlinear state-space expression:

ṗr(t) =

[
ṗrx(t)
ṗry(t)

]
= wl

[
− sin(wt)
cos(wt)

]
+

[
z1(t)
z2(t)

]
y(t) =

[
1 0
0 1

] [
prx(t)
pry(t)

]
+

[
v1(t)
v2(t)

]
(7)

where y(t) is the measured signal with noise.
To design a discrete-time Kalman filter, the discrete-time

model with the sampling interval ∆t of equation (7) by the
approximation of the first-order derivative can be defined as
follows: {

ṗrx(t) ≈ prx(k)−prx(k−1)
∆t | t = (k − 1)

ṗry(t) ≈ pry(k)−pry(k−1)
∆t | t = (k − 1)

(8)

where ∆t is the sampling time; prx(k) and prx(k− 1) denote
the horizontal coordinates of the target point at k moments
and k−1 moments; pry(k) and pry(k−1) denote the vertical
coordinates of the target point at k and k − 1 moments,
respectively.

Substituting (8) into (7), the discrete nonlinear model of the
target point can be obtained:

pr(k) =

[
prx(k)
pry(k)

]
=

[
prx(k − 1)
pry(k − 1)

]
+∆t

[
−wl · sin(w(k − 1))
wl · cos(w(k − 1))

]
+∆t

[
z1(t)
z2(t)

] (9)
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The nonlinear function f1 and f2 can be defined as:[
f1
f2

]
=

[
wl · sin(w(k − 1))∆t
wl · cos(w(k − 1))∆t

]
(10)

where f (p̂r(k − 1)+) = [f1, f2]
T , p̂rx(k − 1)+ and p̂ry(k −

1)+ denote the posterior estimates of the horizontal and
vertical coordinates of the target at time step k−1, respectively.

The first-order Taylor expansion of the nonlinear function
is performed by choosing p̂r(k − 1)+ as the working point.
Thus, the linearized Jacobian matrix Ap is obtained:

Ap =

[
∂f1
∂prx

∂f1
∂pry

∂f2
∂prx

∂f2
∂pry

]
| p̂r(k − 1)+ (11)

In conclusion, a linear time-varying model is obtained.
During the next subsection, a modified EKF based observer is
designed.

B. The Design of Modified EKF-Based Observer

The process noise z (k) and the measurement noise v (k)
are white noise with mean 0, whose covariance matrices are
Q(k) and R(k), respectively.

They are expressed in the following forms:

E
[
z(k)z(l)T

]
= Q(k)δ(k − l)

E
[
v(k)v(l)T

]
= R(k)δ(k − l)

E
[
z(k)v(l)T

]
= 0

(12)

where δ(k−l) is Kronecker delta function. If k = l, δ(k−l) =
1; if k ̸= l, δ(k − l) = 0.

The nonlinear trajectory can be expressed as a discrete
nonlinear dynamic model in the general case:{

pr(k) = pr(k − 1) + ∆t · f(p̂r(k − 1)) + ∆t · z(k − 1)
y(k − 1) = C · pr(k − 1) + v(k − 1)

(13)

where C =

[
1 0
0 1

]
, the same matrix as in equation (7).

Then, depending on the EKF, the local filter process can be
presented by the following recursion:

p̂r(k)
− =p̂r(k − 1)+ + f(p̂r(k − 1)+)∆t

P (k)− =A(p̂r(k − 1)+)P (k − 1)+A(p̂r(k − 1)+)T +Q(k − 1)

K(k) =P (k)−CT ((CP (k)−C)T +R(k))−1

p̂r(k)
+ =p̂r(k)

− +K(k)(y(k)− Cp̂r(k − 1))

P (k)+ =(I −K(k)C)P (k)−(I −K(k)C)T +K(k)R(k)K(k)T

The modified EKF algorithm for observing the nonlinear
trajectory is designed as Algorithm 1.

For proving the convergence of the modified EKF algorithm,
two lemmas were introduced as follows.

Lemma 1. [18]
Designing the Lyapunov function:

V (k) = (p̃r(k)
+)T (P (k)+)−1p̃r(k)

+

where p̃r(k)
− = pr(k)

−−p̂r(k)−, p̃r(k−1)+ = pr(k−1)+−
p̂r(k − 1)+.

Therefore, by the constraints of Q(k) and R(k), V (k)
decreases and converges to a positive scalar V .

Lemma 2. [18]
The following three relationships hold:

lim
k→∞

λmin((P (k)+)−1) =∞ (14)

λmin((P (k)+)−1(p̃r(k)
+)T p̃r(k)

+)

nλmax((P (k)+)−1)
≤ V (k)

tr((P (k)+)−1)
(15)

lim
k→∞

sup
λmax((P (k)+)−1)

λmin((P (k)+)−1)
<∞ (16)

Theorem 1. By adjusting Q(k) and R(k), the modified EKF
algorithm can converge to 0, which means the error between
the estimated value and the true value converges to zero.

Proof. See Appendix A.

Algorithm 1 Modified EKF(n) Algorithm.
Input: w, l: Parameters of determine the radius of the circle;

p̂+rx, p̂
+
ry: Initial estimated state;

∆t: Sampling time;
Q,R: The matrices affecting the effect of the algo-

rithm;
B: Input Matrix; C: Output Matrix;
P+: Unit matrix with the same number of dimensions

as the input matrix B;
Output: estimated value pr(tn−1).

1: for kk = 2 to n do
2: p̂−rx = p̂+rx − wl · sin ((kk − 1)w)∆t;
3: p̂−ry = p̂+ry + wl · cos ((kk − 1)w)∆t;
4: p̂−r =

[
p̂−rx, p̂

−
ry

]T
;

5: A = I +Ap∆t;
6: P− = AP+AT +Q;

7: K = P−CT
(
(CP−C)

T
+R

)−1

;
8: p̂+r = p̂−r +K (y − Cp̂−r );
9: pr(tkk−1)← p̂+r ;

10: P+ = (I −KC)P− (I −KC)
T
+KRKT ;

11: end for
12: return pr(tn−1); exit

In this section, the leader of the MUV can observe the
trajectory of the target by using the modified EKF algorithm.
Therefore, how to dynamically adjust the leader in the for-
mation tracking problem is the core issue, and this issue is
addressed in Section IV.

IV. FORMATION TRACKING STACKELBERG GAME

A. Design of Leader Switching Algorithm

For the formation tracking of the MUV system, the leader
during the tracking process is dynamically adjusted for opti-
mizing the performance. Therefore, a leader switching algo-
rithm is designed.

The leader is set as a variable with a variation period of T.
Suppose the leader is lk at the time step t1, the leader will
be updated from the Nlk at time step t1+T by the state of the
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target. Referring to the form of the equation (4) in Section II,
the error function fL(i) is defined as follows:

fL (i) = ∥pi − pr∥2 +
∑

j∈Ni
eij

∣∣∥pi − pj∥2 − dij
∣∣ (17)

where i ∈ i ∪ Ni.
It is known from (17) that the choice of the leader affects

the speed of convergence to the desired target state and the
position and velocity errors with the followers. Therefore, it
can be used as an error function for leader selection. The
leader-switching algorithm is given as follows.

Algorithm 2 LEADER-SWITCHING(l0, T )
1: The initial leader is denoted by l0;
2: k ← 0;
3: while ture do
4: Every time T, switch leader;(Note that T is the same as

∆t in Algorithm 1)
5: k ← k + 1;
6: pr(tk)← EKF(k + 1)
7: if the leader receives a new value of target point at time

k pr(tk) then
8: The current leader lk−1 sends pr(tk) to its neighbors

in Nlk−1
and calculate the error function fL;

9: if minm∈Nlk−1
fL (m) < fL (lk−1) then

10: lk = argminm∈Nlk−1
fL (m);

11: else
12: lk = lk−1;
13: end if
14: end if
15: end

Therefore, accurate estimation of the target trajectory using
EKF is a prerequisite for leader selection and for establishing
a game theory model. By forming a new set of leaders and
followers, the problem can be described as a hierarchical
decision problem. The Stackelberg game is established to
illustrate the interactions between the vehicles.

B. Design of Stackelberg Game Model

The hierarchical decision problem can be modeled as a
Stackelberg game when there is a leader and multiple follow-
ers, and all followers make decisions simultaneously [32]. As
shown in Fig. 3, the optimal leader is first selected by a leader-
switching algorithm, and then a dynamic leader-follower struc-
ture is obtained. In a Stackelberg game, the leader makes a
decision first, and all followers make decisions simultaneously
according to the leader’s decision. All followers arrive at
the corresponding positions and thus from the desired shape.
Thereafter, the leader adjusts the decision according to the
decision of the followers. The iteration will be ended until a
Stackelberg-Nash equilibrium is reached.

Therefore, the Stackelberg game model for the formation
tracking problem is established. The elements of Stackelberg
game model G = (N,A,U) are defined as follows.

• N = {L,F} is the set of vehicles playing the game, where
L is the set of leaders, F is the set of followers;

Fig. 3. The relationship between leader-switching and stackelberg game.

• A = {AL,AF} is the action set, AL = {ai | i ∈ L} is the
action set of the leader, AF = {aj | j ∈ F} is the action
set of the follower;

• U = {UL,UF} is the utility function, UL = {Ui | i ∈ L}
is the utility function of the leader, UF = {Uj | j ∈ F}
is the utility function of the follower.

The utility function is given as follows:

Ui = −∥pi − pr∥2 −
∑
j∈Ni

eij
∣∣∥pi − pj∥2 − dij

∣∣ , i ∈ L

Uj = −
∑
k∈Nj

ejk |∥pj − pk||2 − djk |, j ∈ F

where Nj denotes the set of neighbors of the jth vehicle;
djk denotes the distance between the jth vehicle and the kth
vehicle.

Throughout the Starkberg game, the leader’s goal is to
find an action a∗i that maximizes the utility function Ui. The
follower’s goal is to find an action a∗j that maximizes the
utility function Uj . Thus (a∗i , a

∗
j ) is the equilibrium point of

the Starkberg game. Therefore, it is important to prove the
existence of the equilibrium point.

C. Proof of Starkberg-Nash Equilibrium

According to the definition of equilibrium in [24], the
Stackelberg-Nash equilibrium is given to describe the feature
of the designed game model.

Definition 1. (Starkberg-Nash Equilibrium): If there exists a
mapping Tj : AL → AF for each j ∈ F, such that, for any
fixed ai ∈ AL

Uj (ai, Tj (ai) , T−j (ai)) ≥ Uj (ai, aj , T−j (ai)) (18)

where Ui = −fi, i ∈ L; Uj = −fj , j ∈ F. For all aj ∈ AF,
T−j (ai) = {Tm (ai) | m ∈ F,m ̸= j}

If there exists a∗i such that

Ui (a
∗
i , Tj (a

∗
i ) , T−j (a

∗
i )) ≥ Ui (ai, Tj (ai) , T−j (ai))

(19)
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(
a∗i , a

∗
j

)
is called the Stackelberg-Nash equilibrium, where

a∗j = Tj (a
∗
i ) , i ∈ L, j ∈ F.

Equation (18) states that for a fixed action ai ∈ AL, when
other followers take the action T−j (ai), the jth follower
chooses its response action Tj (ai) with the maximum value of
utility function Uj . Then all the followers form a Nash equilib-
rium, i.e., {T1 (ai) , T2 (ai) , . . . , Tp (ai)} , j = 1, 2, . . . , p. In
this case, no follower j can benefit by unilaterally deviating
from its best response Tj (ai).

Equation (19) represents a Stackelberg equilibrium of the
leader, which depends on the response action of the Nash
equilibrium composed of all followers. Since the leader knows
the response action of the followers, the leader can choose
an action a∗i with the maximum value of Ui. Finally, the
Stackelberg-Nash equilibrium can be achieved.

Unlike the traditional one-follower model, the interaction
between multiple followers affects the Stackelberg equilib-
rium. Therefore, the ordinal potential game is introduced to
prove the existence of Nash equilibrium among followers. The
definition of the ordinal potential game is given as follows.

Definition 2. (Ordinal Potential Game): GF = (F,AF,UF) is
an ordinal potential game if there exists a function φ

sgn (∆φ) = sgn (∆Uj) (20)

For any j ∈ F, the leader action changes from ai to a′i. Then
the jth follower action changes from Tj (ai) to Tj (a

′
i) with

the actions of the other followers T−j (ai) remain unchanged.
∆φ and ∆Uj can be written as

∆φ = φ (ai, Tj (ai) , T−j (ai))
− φ (a′i, Tj (a

′
i) , T−j (ai)) ,

(21)

∆Uj = Uj (ai, Tj (ai) , T−j (ai))
− Uj (a

′
i, Tj (a

′
i) , T−j (ai)) ,

(22)

where φ is an ordinal potential function. Therefore, for an
ordinal potential game, the trend of the utility function is the
same as the trend of the ordinal potential function.

The existence of the Stackelberg-Nash equilibrium is proven
in Theorem 2.

Theorem 2. There exists a Stackelberg-Nash equilibrium for
the designed Stackelberg game model G = (N,A,U).

Proof. See Appendix B.

V. REINFORCEMENT LEARNING-BASED ALGORITHM FOR
SOLVING THE STACKELBERG GAME MODEL

In multi-agent reinforcement learning, each vehicle is con-
sidered as an agent, which takes action in the current state to
get the next state and reward. The agent takes the next action
with the new state and reward. However, the environment is
often unpredictable in the real world, so model-free reinforce-
ment learning is widely used in various fields. Q-learning is the
most effective model-free reinforcement learning algorithm,
which can be converged if a proper ϵ-greedy strategy is chosen
[39].

A reinforcement learning-based algorithm with leader
switching is designed to achieve the equilibrium point of the
Stackelberg game model for the formation tracking problem.

For Q-learning reinforcement learning algorithms, the set-
ting of the action set is important. For the formation tracking
problem of the MUV system, the state transition equation of
the ith vehicle can be written as

Si(t+ 1) = Si(t) + vi(t)η

where Si(t) is the position vector of the ith vehicle at moment
t, v(t) is the velocity vector of the ith vehicle at moment t,
η is the step size, and Si(t + 1) is the position vector of the
ith vehicle at moment t+ 1.

Thus, the velocity vector vi is the action that the ith vehicle
needs to select, which allows the vehicle to move to the next
state. The velocity vector vi can be represented in two ways,
one can be decomposed into two velocity components:

vi(t) = vix(t) + viy(t)

where vix(t) is the velocity component of vi(t) in the x-
coordinate, viy(t) is the velocity component of vi(t) in the
y-coordinate.

However, this approach will make the subsequent algorithm
design complex. Therefore, we choose the second approach,
a fixed velocity norm, by changing the directional angle and
thus forming different motion vectors:

vix(t) = |vi(t)| cosθi
viy(t) = |vi(t)| sinθi

where θi is the directional angle of the vehicle.
Therefore, the environment, state set, action set and reward

set of the MUV system can be set as follows:
• Environment: A canvas is used to display the environment

for multi-vehicle motion trajectories, as shown in Section
VI.

• State set: The position of the vehicle in the environment,
where the state set of the ith vehicle is Si.

• Action set: Fixing the norm of the velocity, the direc-
tional angle is taken as an action set. Each of the four
quadrants is divided into 15 actions, where A1, A2, A3,
and A4 represent the set of actions in the first, second,
third, and fourth quadrants, respectively. Note that the
vehicle determines the quadrant after the quadrant pre-
determination, and then can only select the action in that
quadrant. Thus limiting the steering rate of the vehicle.

• Reward set: Set the reward set R to the utility function
U.

A Q-learning algorithm with leader-switching is developed
for solving the designed game model.

Theorem 3. The leader-switching Q-learning algorithm can
achieve equilibrium of the designed Stackelberg game.

Proof. See Appendix C.

Note that when the leader makes a decision, the followers
will reach the position corresponding to the leader according
to the desired formation. With this strategy, all followers will
reach equilibrium, so the Stackelberg-Nash equilibrium can be
reached.
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Fig. 4. Action set.

Algorithm 3 Leader-Switching Q-learning Algorithm.
Input:

1: γ: Discount factor;
2: α: Learning rate;
3: ε -greedy: Probabilistic action selection policy, where the

action is selected by the optimal of the Q table with
probability of ε and the probability of 1-ε is selected
randomly;

4: A1, A2, A3, A4: Action set of the first, second, third, and
fourth quadrants

Output: Q: Final updated Q table.
5: Initialize Q(s, a)
6: repeat (for each epsoid)
7: optimal leader ← LEADER-SWITCHING(l0, T ).
8: Determine the leader in m quadrant, where m=1,2,3,4.
9: Based on the current state and the Q table, the leader

selects the action ai ∈ Am by the ε-greedy policy.
10: The leader announces the state action pair (si, ai), and

receives the state information from the followers.
11: The jth follower makes the response action Tj (ai) by

observing the environment and the leader’s strategy and
then arrives at the corresponding position in the desired
formation.

12: for i ∈ L do
13: Leader i makes the action ai based on the reference

follower response, get reward r
14: Qi(si, ai)← Qi(si, ai)
15: +α

[
r + γmaxa′

i
Qi (si

′, ai
′)−Qi(si, ai)

]
16: end for
17: si ← s

′

i

18: end
19: until The leader’s state si converges to the goal state pr

VI. SIMULATION EXPERIMENTS

In this section, the simulation experiments are given based
on the PyCharm platform. The effectiveness of the EKF
algorithm is first verified, then the effectiveness of the leader
switching method is verified by comparative simulations.
Finally, formation tracking of the MUV system with various
shapes [40]–[42](e.g., triangle, quadrilateral, and trapezoid) is
verified.

A. Simulation of EKF Algorithm for Target Trajectory Esti-
mation

In this experiment, we set l = 300 and w = 0.01π to get
a circle with (-3, 0) as the center and 3 as the radius. So by
changing the constants w and l, any circular trajectory can be
obtained.

The parameters are set as ∆t = 0.01s, σ1 = 0.1, σ2 = 0.1,

B = 0, C =

[
1 0
0 1

]
, thus obtaining the discrete state space

expression. The measurement noise v (k), which is white noise
with mean 0, is then input to test the validity of Algorithm 1.

A larger Q means less confidence in the predicted values
and more confidence in the measured values. A larger R
implies that the EKF response will be slower. Better results
are obtained by adjusting the Q and R matrices, as shown in
Fig. 5 and Fig. 6. Fig. 5(a) shows the target point trajectory
measured by the sensor. Fig. 5(b) shows the estimated target
point trajectory after the EKF algorithm. Fig. 6(a) shows the
measured and estimated values of the prx. Fig. 6(b) shows
the measured and estimated values of the pry. It can be seen
that the EKF algorithm accurately estimates the position of the
target, which ensures the accuracy of the formation tracking
problem.
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Fig. 5. Target point pr . (a) Measurement trajectory of the target point.
(b) Estimated trajectory of the target point.

B. Simulation of Leader-Switching Q-Learning Algorithm

Fig. 7 shows the trajectory of the formation tracking using
the novel developed reinforcement learning-based algorithm.
The blue diamond represents the target point. The green
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Fig. 6. Horizontal and vertical position of the target point. (a) Measurement
trajectory and estimated trajectory of prx. (b) Measurement trajectory and
estimated trajectory of pry .

Fig. 7. Trajectory of MUV using novel developed algorithm for formation
tracking

dot represents the initial leader. The black triangle and red
dot represent the initial two followers. During the formation
tracking, the vehicles in the followers appear more favorable
to be the leader than the green dot, so the leader is switched.
After the last leader switching, the black triangle represents
the new leader, and the red and green dots represent the new
two followers.

By comparing (a) and (b) in Fig. 8, it can be found that the
target point can be tracked faster by the novel developed rein-
forcement learning-based algorithm, i.e., the leader-switching
Q-learning algorithm. In Fig .8, the initial position of the target
point is (-6,0); the initial position of the initial leader is (-6,16);
the initial positions of the two initial followers are (-5,18) and
(-4,16). Fig. 8(a) shows the simulation generated by the leader-
switching Q-learning algorithm, tracking the target point at the
position (0,5), and switching the leader once in total during the
tracking process. Fig. 8(b) shows the simulation generated by
the traditional Q-learning algorithm, where the black triangle
is the fixed leader, and finally tracks the target point at position

(a)

(b)

Fig. 8. Tracking trajectory under two algorithms. (a) Q-learning algorithm
with leader switching. (b) Traditional Q-learning algorithm.

TABLE I
TRACKING TIME IN TWO CASES

Leader-Switching Q-learning Traditional Q-learning
8.34s 9.81s
7.82s 9.50s
8.11s 10.16s
8.94s 10.59s
8.18s 11.53s
7.64s 7.69s
8.63s 8.90s
9.65s 15.60s
6.82s 9.43s
10.87s 11.37s

(2,4). It can be seen that Fig. 8(a) tracks the target point faster
than Fig. 8(b).

The initial position of the target point is changed and several
comparative simulations are performed. The formation track-
ing times of leader-switching Q-learning and traditional Q-
learning are compared, as shown in Table I. Fig. 9 shows more
specifically the effect of the two algorithms. Fig. 9(a) shows
the tracking time of the leader-switching Q-learning algorithm
and the traditional Q-learning algorithm under 10 experiments.
The statistical comparison of the tracking times of the leader-
switching Q-learning algorithm and the traditional Q-learning
algorithm can be seen in Fig. 9(b). The red line represents
the median. The upper blue and black lines represent the
upper quartile and the upper limit of the tracking time. The
lower blue and black lines represent the lower quartile and the
lower limit of the tracking time, respectively. The red dots can
be interpreted as outliers. Therefore, the leader-switching Q-
learning algorithm works better than the traditional Q-learning
algorithm.
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Fig. 9. Comparison of the two algorithms. (a) The tracking times of the two
algorithms are compared separately for 10 experiments. (b) Compare the two
algorithms with the statistics of 10 experiments.

C. Simulation of Multiple Formation Shapes

In Fig. 10 and Fig. 11, we also implement a variety of
shapes, such as quadrilateral and trapezoid formations, which
are capable of tracking up dynamic nonlinear targets while
switching leaders.

Fig. 10. Trajectories of quadrilateral formation tracking.

In Fig. 10, the blue diamond represents the target point. The
red dot represents the initial leader. The black triangles, the
green and purple dots represent the initial followers. During
the formation tracking, other followers are in positions more
conducive to tracking the target, so the leader was switched.
After the last leader switching, the green dot represents the
new leader. The black triangles, the red and purple dots
represent the new followers.

In Fig. 11, the blue diamond represents the target point.
The black triangle represents the initial leader. The red, green,
and purple dots represent the initial followers. During the
formation tracking, choosing the vehicle among the followers
as the leader is more conducive to tracking the target, so the
leader was switched. After leader switching, the green dot

Fig. 11. Trajectories of trapezoidal formation tracking.

represents the new leader. The black triangles, the red and
purple dots represent the new followers.
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Fig. 12. Convergence of the distance between MUV.

The formation tracking process of the MUV system in Fig.
7 is selected for analysis. This includes the distance between
the leader and the target as well as the distance between
the vehicles of the MUV system. The blue line in Fig. 12
represents the distance between the leader and the target of
the MUV system during the formation track. The red line in
Fig. 12 represents the distance between the black triangle and
the green dot in Fig. 7. The yellow line in Fig. 12 represents
the distance between the black triangle and the red dot in Fig.
7. The purple line in Fig. 12 represents the distance between
the green and red dots in Fig. 7.

The change of the blue line in Fig. 12 shows that the
distance between the leader of the MUV system and the target
converges to zero. Thus satisfying our desired Objective 2.
The variations of the red, yellow, and purple lines in Fig. 12
converge to the given values d12, d13, and d23, respectively.
Thus satisfying our desired Objective 3.

VII. CONCLUSIONS

In this paper, the formation tracking problem of the MUV
system is discussed. An EKF algorithm is introduced to
accurately estimate the state of the target. We establish a hi-
erarchical Stackelberg game model for the formation tracking
problem, which consists of a leader and multiple followers.
The existence of the Stackelberg-Nash equilibrium of the
designed game model is proven. A reinforcement learning-
based algorithm for solving the game model is developed. The
effectiveness of the designed method is verified by realizing
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the formation of triangles, quadrilaterals, and trapezoids in
four quadrants. By comparing the traditional Q-learning and
designed leader-switching Q-learning algorithm, it can be
found that the designed method can make the multi-vehicle
system can earn a shorter formation tracking time of MUV.

APPENDIX A

Proof. The linear property of the model is evaluated by intro-
ducing the unknown matrices α(k) and β(k) and constructing
the equation:

α(k)e(k) = Cp̃r(k)
−

p̃r(k)
− = β(k − 1)A(p̂r(k − 1)+)p̃r(k − 1)+

Use it instead of the approximation in the linear convergence
analysis:

e(k) ≈ Cp̃r(k)
−

p̃r(k)
− ≈ A(p̂r(k − 1)+)p̃r(k − 1)+

where α(k) and β(k−1) are the introduced diagonal matrices,
e(k) = y(k)− Cp̂r(k)

−.
As described in Lemma 1,

lim
k→∞

V (k) = V

By means of (14), (15) and (16) in Lemma 2, it can be
proven as follows:

lim
k→∞

λmin((P (k)+)−1) =∞ (14)
=⇒ lim

k→∞
tr((P (k)+)−1) =∞

(15)
=⇒ lim

k→∞

λmin((P (k)+)−1(p̃r(k)
+)T p̃r(k)

+)

nλmax((P (k)+)−1)
= 0

(16)
=⇒ lim

k→∞
p̃r(k)

+ = 0 =⇒ pr(k) = p̂r(k)
+

APPENDIX B

Proof. For leader i, if it changes its current behavior ai to a′i,
then follower j will change it’s behavior Tj (ai) to Tj (a

′
i),

while other followers keep their behavior T−j (ai) unchanged.
Design a potential function φ

φ = −
∑

j∈F = −
(
fj +

∑
p∈Nj

ejpfp +
∑

z∈Nj,p
ejzfz

)
Where Nj = {p ∈ F | p ̸= j}, Nj,p = {z ∈ F | z ̸= j, z /∈ Nj}

If the action of the jth follower changes from aj to a′j , then
the objective function changes from fj to f ′

j , and from fp to
f ′
p. fz remains the same.

∆φ = −
((

fj − f ′
j

)
+
∑

p∈Nj
ejpfp −

∑
p∈Nj

ejpf
′
p

)
(23)

Since information is interactive, the change in the objective
function of jth follower is equal to the change in the sum of the
objective functions of the neighbors with whom jth follower
can interact with information, the details are as follows.

fj − f ′
j=
∑

p∈Nj
ejpfp −

∑
p∈Nj

ejpf
′
p (24)

Substitute (24) into (23) to get (25)

∆φ = −2
(
fj − f ′

j

)
(25)

In Definition 1, Uj = −fj , j ∈ F, (25) can be rewritten as
(26)

∆Uj = −
(
fj − f ′

j

)
(26)

Combining (25) and (26)

2∆Uj = ∆φ (27)

Equation (20) is satisfied, so the designed game is an ordinal
potential game.

An ordinal potential game has a Nash equilibrium [33], [43].
Therefore, the problem can be established as an ordinal poten-
tial game between followers, and there exists at least one Nash
equilibrium. If there is a Nash equilibrium for the followers,
then the Stackelberg-Nash equilibrium of the system is also
guaranteed. When all followers reach the Nash equilibrium,
no follower can improve its utility by deviating its strategies.
The leader makes a strategy to maximize its utility in the
presence of Nash equilibrium. Therefore, in the Stackelberg-
Nash equilibrium, neither the leader nor the followers can
improve their utility by deviating their strategies.

APPENDIX C

Proof. The convergence of Algorithm 3 can proven by using
the three assumptions in Theorem 2 in [44].

It is known by Algorithm 3

Qi(si, ai)←
(1− α)Qi(si, ai) + α

[
r + γmaxa′

i
Qi (si

′, ai
′)
] (28)

Subtracting Q∗
i (si, ai) from both sides of (28) and making

∆t = Qi(si, ai)−Q∗
i (si, ai), then (28) can be rewritten as

∆t←
(1− α)∆t+ α

[
r + γmaxa′

i
Qi (si

′, ai
′)−Q∗

i (si, ai)
]

Firstly, α is the learning rate and satisfies 0 ≤ α ≤ 1, so
that Assumption 1 is satisfied.

Secondly, Assumption 2 can be proven. Set F as follows

F (si, ai) = r + γmaxa′
i
Qi (si

′, ai
′)−Q∗

i (si, ai)

The probability of the ith leader will convert from si to si
′

as Pai
(si, s

′
i)

E (F )
=

∑
s′i∈Si

Pa∗
i
(si, s

′
i)
[
r + γmaxa′

i
Qi (si

′, ai
′)−Q∗

i (si, ai)
]

= (HQi)(si, ai)−Q∗
i (si, ai)

= (HQi)(si, ai)− (HQ∗
i )(si, ai)

(29)

where H is the operator.
For the simplicity of the subsequent proof, simplify (29) to

E (F ) = HQi −HQ∗
i
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Then

∥HQi −HQ∗
i ∥∞

= max
∣∣∣∑s′i∈Si

Pai

[
r + γmaxa′

i
Qi − (r + γmaxa′

i
Q∗

i )
]∣∣∣

= max γ
∣∣∣∑s′i∈Si

Pai

[
maxa′

i
Qi −maxa′

i
Q∗

i

]∣∣∣
≤ max γ

∑
s′i∈Si

Pai

∣∣maxa′
i
Qi −maxa′

i
Q∗

i

∣∣
≤ max γ

∑
s′i∈Si

Pai
maxa′

i
|Qi −Q∗

i |
= max γ

∑
s′i∈Si

Pai
∥Qi −Q∗

i ∥∞
= γ ∥Qi −Q∗

i ∥∞ = γ ∥∆t∥∞
where γ is the decay rate and satisfies 0 < γ < 1, so that
Assumption 2 is satisfied.

Finally, Assumption 3 can be proven. Set the variance of F
as follows

Var(F )
= E

[
(F − E(F ))2

]
= E

[
(r + γmaxa′

i
Qi −Q∗

i − (HQi −Q∗
i ))

2
]

= E
[
(r + γmaxa′

i
Qi −HQi)

2
]

=Var(r + γmaxa′
i
Qi)

where the reward r is bounded and 0 < γ < 1, so V ar(F ) is
bounded and therefore satisfies Assumption 3.

By Theorem 2 in [44], ∆t converges to 0 if three assump-
tions are satisfied, i.e., Qi converges to Q∗

i .
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