67 research outputs found

    The anterior scleral thickness in primary open-angle glaucoma with high myopia

    Get PDF
    PurposeThis study aimed to investigate and compare the anterior scleral thickness (AST) among high myopia (HM), primary open-angle glaucoma (POAG), and POAG with HM (HMPOAG) groups.MethodsThirty-two HM eyes, 30 POAG eyes, and 31 HMPOAG eyes were included. The Schlemm’s canal (SC) area, trabecular meshwork (TM) thickness, scleral spur (SS) length, and AST were measured using swept-source optical coherence tomography. AST was measured at 0 mm (AST0), 1 mm (AST1), 2 mm (AST2), and 3 mm (AST3) from SS.ResultsThe HMPOAG group had significantly thinner AST, SS length, and TM thickness than the HM and POAG groups (all p < 0.05). In addition, the SC area of the HMPOAG group was also significantly smaller than that of the HM group (p < 0.001).ConclusionThe HMPOAG group had the thinnest AST, shortest SS, thinnest TM, and smallest SC. The thinnest AST might contribute to the shortest SS, and further to the thinnest TM and smallest SC in the HMPOAG group. AST might be a novel clinical indicator in the prediction and evaluation of POAG

    Self-Lubricating Polytetrafluoroethylene/Polyimide Blends Reinforced with Zinc Oxide Nanoparticles

    Get PDF
    ZnO nanoparticle reinforced polytetrafluoroethylene/polyimide (PTFE/PI) nanocomposites were prepared and their corresponding tribological and mechanical properties were studied in this work. The influences of ZnO loading, sliding load, and velocity on the tribological properties of ZnO/PTFE/PI nanocomposites were systematically investigated. Results reveal that nanocomposites reinforced with 3 wt% ZnO exhibit the optimal tribological and mechanical properties. Specifically, the wear loss decreased by 20% after incorporating 3 wt% ZnO compared to unfilled PTFE/PI. Meanwhile, the impact strength, tensile strength, and elongation-at-break of 3 wt% ZnO/PTFE/PI nanocomposite are enhanced by 85, 5, and 10% compared to pure PTFE/PI blend. Microstructure investigation reveals that ZnO nanoparticles facilitate the formation of continuous, uniform, and smooth transfer film and thus reduce the adhesive wear of PTFE/PI

    Excellent performance of Pt-C/TiO2 for methanol oxidation:contribution of mesopores and partially coated carbon

    Get PDF
    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support

    Solar Driven Gas Phase Advanced Oxidation Processes for Methane Removal – Challenges and Perspectives

    Get PDF
    Methane (CH(4)) is a potent greenhouse gas and the second highest contributor to global warming. CH(4) emissions are still growing at an alarmingly high pace. To limit global warming to 1.5 °C, one of the most effective strategies is to reduce rapidly the CH(4) emissions by developing large‐scale methane removal methods. The purpose of this perspective paper is threefold. (1) To highlight the technology gap dealing with low concentration CH(4) (at many emission sources and in the atmosphere). (2) To analyze the challenges and prospects of solar‐driven gas phase advanced oxidation processes for CH(4) removal. And (3) to propose some ideas, which may help to develop solar‐driven gas phase advanced oxidation processes and make them deployable at a climate significant scale

    The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis
    corecore