

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Numerical analysis of a negative emission technology of methane to mitigate climate change

Citation for published version:

Xiong, H, Ming, T, Wu, Y, Li, W, Mu, L, De richter, R, Yan, S, Yuan, Y & Peng, C 2023, 'Numerical analysis of a negative emission technology of methane to mitigate climate change', Solar Energy, vol. 255, pp. 416-424. https://doi.org/10.1016/j.solener.2023.02.048

Digital Object Identifier (DOI):

10.1016/j.solener.2023.02.048

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Solar Energy

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Numerical analysis of a negative emission technology of methane to
2	mitigate climate change
3	Hanbing Xiong ¹ , Tingzhen Ming ^{1, *} , Yongjia Wu ¹ , Wei Li ³ , Liwen Mu ⁴ , Renaud de Richter ⁵ ,
4	Suying yan ⁶ , Yanping Yuan ⁷ , Chong Peng ²
5	1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan
6	430070, China
7	2. School of Urban Planning and Architecture, Huazhong University of Science and Technology,
8	Wuhan 430074, China
9	3. Institute for Materials and Processes, School of Engineering, The University of Edinburgh,
10	Edinburgh EH9 3FB, Scotland, UK
11	4. College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical
12	Engineering, Nanjing Tech University, Nanjing, 211816, PR China
13	5. Tour-Solaire.Fr, 8 Impasse des Papillons, F34090 Montpellier, France
14	6. College of Energy and Power Engineering, Inner Mongolia University of Technology,
15	Hohhot 010051, China
16	7. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
17	Corresponding Author:
18	Tingzhen Ming: School of Civil Engineering and Architecture, Wuhan University of
19	Technology, Wuhan 430070, China. Email: tzming@whut.edu.cn
20	
21	Abstract: The increase of 1.09°C in global temperature resulted in significant
22	catastrophes because of the extreme climate. The climate change rate can be slowed
23	down by reducing the levels of CH_4 and CO_2 in the atmosphere. The solar chimney
24	power plant integrated with a honeycomb photocatalytic reactor (SCPP-HPCR) uses
25	the photocatalytic technology to remove atmospheric CH ₄ . In addition, CO ₂ emissions
26	can be reduced from coal fired power plant due to the generating capacity of the system.
27	In this paper, the influence of the geometric parameters of the reactor on the turbine
28	efficiency and overall performance of the SCPP-HPCR are studied by numerical
29	simulation. The obtained results showed that the flow resistance inside the system was

mostly caused by the HPCR at low turbine speed, and primarily by the turbine at high
turbine speed. Reducing the pore diameter of the reactor could improve the
photocatalytic performance of the SCPP-HPCR more than increasing the turbine speed.
The SCPP-HPCR having a pore diameter of 3 mm, porosity of 0.85, and constant
turbine speed of 180 rpm, built in Qianyanzhou, China, could remove 2.38 kg of CH₄
and reduce 375.52 kg of CO₂ in one day.

36

37 Keywords: Solar chimney; Remove CH4; Reduce CO₂ emissions; Climate change,

- 38 Numerical simulation.
- 39

Constants for reaction rate calculation
Constants for turbulent model
CH ₄ concentration, $mol \cdot m^{-3}$
O ₂ concentration, $mol \cdot m^{-3}$
Reaction rate of CH ₄ , $mol \cdot W^{-1} \cdot m^{-1} \cdot s^{-1}$
Solar radiation, $W \cdot m^{-2}$
Heat flux of ground, $W \cdot m^{-2}$
Specific surface area, m^{-1}
Diffusion flux of species <i>i</i> , <i>mol</i> · <i>s</i> ⁻¹ · <i>m</i> ⁻³
Mass flow rate, $kg \cdot s^{-1}$
Mass fraction of CH ₄ at the entrance
Mass fraction of CH ₄ at the exit
Output power of the system, kW
Momentum loss term, $N \cdot m^{-3}$
Additional rate owing to the discrete phase, $kg \cdot m^{-3} \cdot s^{-1}$
Reduction rate of CO ₂ emission from the coal-fired power station, $kg \cdot h^{-1}$
Reduction rate of CO ₂ equivalent from photocatalytic CH ₄ , $kg \cdot h^{-1}$
CO_2 reduction rate, $kg \cdot h^{-1}$
Kinetic viscosity, $m^2 \cdot s^{-1}$
Coefficient of thermal expansion, K^{-1}
Gas density, $kg \cdot m^{-3}$
Shear stress, $N \cdot m^{-2}$
Karman Constant

Abbreviations	
GWP	Global warming potential
SCPP	Solar chimney power plant
HPCR	Honeycomb photocatalytic reactor
IPCC	Intergovernmental panel on climate change

41 **1. Introduction**

The global climate change caused by the increasing global temperature was a 42 43 significant challenge for this century. The maximal temperature increase that the Earth could withstand should be limited to 2 °C when compared with the pre-industrial 44 periods, and it should not exceed 0.1 °C each decade (Vellinga and Swart, 1991). 45 According to the Intergovernmental Panel on Climate Change (IPCC) (Masson-46 Delmotte et al., 2021), the global average temperature in 2020 was 1.09 °C warmer than 47 that in the 20th century, with an increase of 1.59 °C on land and 0.88 °C in ocean. 48 49 Extreme events caused by climate anomalies, such as localized droughts or heavy rainfall, forest fires, and biological extinctions, were frequently occurred (Wang et al., 50 51 2022). In addition, other terrifying events prompted by global warming had the potential to bring great danger to people in the future, such as the loss of seasonal snowpack, 52 glacier melting, permafrost thawing, and decrease in summer Arctic sea ice (Witze, 53 2019). To achieve the Paris Agreement's target of restricting global warming to 1.5°C, 54 the greenhouse gas emissions should be promptly and significantly decreased. 55

56 It was widely believed that removing CO₂ from the atmosphere could significantly 57 mitigate climate change. Many active greenhouse gas mitigation technologies, such as carbon capture, utilization, and storage (CCS) (Bui et al., 2018), bioenergy with carbon 58 capture and storage (BECCS) (Sanchez et al., 2018), and direct air capture (DAC) 59 60 (House et al., 2011) were proposed. CH₄ owns a global warming potential (GWP) 84 times higher than CO₂. Although the concentration of CH₄ in the atmosphere was low, 61 it had a contribution of 16 % of the global warming impact. The greenhouse effect 62 63 caused by CH₄ had attracted global attention as the atmospheric CH₄ concentration was 64 increasing from pre-industrial of 0.76 ppm to 1.8 ppm today, with an increasing rate much higher than that of CO₂. Almost 40 % of CH₄ emission was from natural sources, 65

such as wetlands and termites. In addition, other 60% were from anthropogenic, such 66 as ruminants, rice agriculture, fossil fuel extraction, landfills, and biomass burning 67 (Allen, 2016). The atmospheric persistence of CH₄ was short, and therefore reducing 68 the emissions could achieve a substantial climate mitigation effect in a short time frame 69 (Kuylenstierna et al., 2021). Moreover, 90 % of the atmospheric CH₄ was oxidized by 70 hydroxyl radicals, which promoted the ozone production and affected the oxidation 71 performance of the tropospheric (Galpern, 2021). Furthermore, high ozone levels could 72 73 endanger human health, affect plant and animal growth, and cause photochemical haze.

74 The existing methods for atmospheric CH₄ removal include zeolites, soil amendments, iron salt aerosols, biofilters, and photocatalysts. Forest soils were 75 considered as significant CH4 sink, neutralizing 13 % of anthropogenic carbon 76 emissions (Price et al., 2004). However, developing effective CH₄ removal methods 77 was crucial due to the fact that it could take too long for ecosystems to naturally 78 decompose the atmospheric CH₄. Brenneis et al. (Brenneis et al., 2021) synthesized a 79 Cu-dropped zeolite as a thermocatalyst, which removed 100 % of CH₄ at atmospheric 80 81 levels, at a reaction temperature of 310 °C. Although this catalyst could sustain high activity after 300 h of recycling, the high temperature environment required for the 82 reactions restricted the large-scale development of this technology. Iron-salt aerosols 83 could remove atmospheric CH₄ by increasing the level of Cl⁻ in the air. However, more 84 studies should be conducted to evaluate the feasibility of this technology (Ming et al., 85 2021a). Moreover, some new removal methods were being investigated (Wang et al.). 86 CH₄ could be converted to less potent greenhouse gas CO₂ under sunlight at room 87 temperature and pressure, using the photocatalytic semiconductor technology (de 88 89 Richter et al., 2017).

The solar chimney power plant (SCPP), which is a green thermal wind power generating system, can develop a steady upward airflow inside the chimney. However, it had a low overall effectiveness (Vazquez-Ruiz et al., 2022). Many researchers tried to improve the solar energy utilization efficiency of the SCPP, or used it for other objectives, such as the desalination of saltwater (Zuo et al., 2020) and the drying of food (Maia and Silva, 2022). Some economic evaluation and internal optimization 96 methods had also been extensively studied (Zuo et al., 2021; Zuo et al., 2022). The 97 SCPP also performed well in terms of cleaning urban air. It produced a stable airflow 98 with physical filtering to purify the particulates in the city air (Cao et al., 2015). Cao et 99 al. (Cao et al., 2018) designed and constructed the first haze removal tower in Xi'an, 100 China, with a collector size of 43 m \times 60 m and a chimney height of 60 m, which 101 confirmed the viability of improving urban air quality with the SCPP from an 102 engineering standpoint.

103 The IPCC highlighted de Richter's proposal (de Richter et al., 2017) of combining the SCPP with photocatalysis as a practicable strategy for removing CH₄ on a large 104 scale (Fuss et al., 2018; Minx et al., 2018). The types of reactors and the photocatalytic 105 were the critical factors affecting the photocatalytic performance of the system. The 106 honeycomb photocatalytic reactor (HPCR) having a large specific surface area is an 107 efficient photocatalytic reactor. In addition, the internal flow field was rectified by 108 placing the HPCR within the collector (Zhang et al., 2022). Many laboratory tested for 109 CH₄ between 50 ppm and 1000 ppm demonstrated that its conversion rate and product 110 111 selectivity were significantly improved by the addition of noble metals to the TiO₂ (Ahmed et al., 2022; Li, Y. et al., 2019; Li, Z. et al., 2019; Sekar et al., 2021). It was 112 important to mention that Ag/ZnO, which was a novel photocatalyst, could be activated 113 by sunlight and it can convert CH₄, with a concentration of 50 ppm, to CO₂ in 20 min. 114 The catalytic efficiency was even better with lower concentration (Chen et al., 2016). 115 Ming et al. (Ming et al., 2021b) conducted numerical simulations to first study the 116 factors affecting the performance of the SCPP-HPCR without considering the power 117 generation. The output power of the system can be reliably estimated by converting the 118 119 3-D turbine to the surface of pressure drop (Pastohr et al., 2004). However, the real 120 fluid trace inside the system could not be simulated. Guo et al. (Guo et al., 2014) more precisely evaluated the performance of the SCPP by considering both the 3-D turbine 121 and the solar radiation model. For the SCPP-HPCR, the main performances of the 122 system are the degradation of atmospheric CH₄ by the reactor and the turbine power 123 124 generation. Both could affect the flow of air in the SCPP-HPCR, and knowing the relationship between them can significantly improve the system performance. 125

In this paper, a numerical model is first developed to study the overall performance of the SCPP-HPCR considering 3-D turbine. The parameters of the reactor including the pore diameter, porosity, and operating conditions of the turbine are optimized. This provides a reference for the future design and construction of the SCPP-HPCR. Furthermore, taking into account the CH₄ removal and renewable electricity generation, the equivalent CO₂ emission reduction of the SCPP-HPCR is discussed.

132

133 **2.** Computation model

134 2.1 Geometric model

The dimension of the geometric model match that of the Spanish prototype (Haaf, W, 1984). The radius of the collector is 120 m, and its height linearly varies from 2 m at the entrance to 6 m at the bottom of the chimney. The chimney has a radius of 5 m and a height of 200 m. The CLARK-Y airfoil is used in the axial turbine, which is located at the bottom of the chimney at a height of 7 m above the ground (Tingzhen et al., 2008), as shown in Fig. 1.

The starting of the HPCR is at 10 m from the entrance inside the canopy. The reactor is made of perspex with good light transmission. The P25 photocatalyst is uniformly distributed on the inner wall of the honeycomb channel. Note that P25 is selected due to the fact that it is cheap and stable, and it has a good film formation property (Ma and Yang, 2010). It is more efficient to remove CH₄ by increasing the reactor length. However, the HPCR length is kept at 5 m in this study, because a longer reactor can diminish the ability of the ground to absorb solar energy.

Fig. 1. Schematics of the geometrical model.

148

149

2.2 Numerical model 151

The Rayleigh number $(R_a = \frac{g\beta\Delta TH^3}{av})$ is a dimensionless number associated with 152 buoyancy-driven convection. The flow in the SCPP-HPCR is fully turbulent due to 153 $R_a \ge 10^{10}$ (Tingzhen et al., 2006). The governing equations, including the continuity, 154 momentum, energy, RNG k- ε , and transport equations, are expressed as: 155

156 Continuity equation

157

159

161

Momentum equation 158

$$\frac{\partial(\rho u_i u_j)}{\partial x} = \rho g - \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j}$$
(2)

(1)

160 Energy equation

$$\frac{\partial(\rho c_p u_j T)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\lambda \frac{\partial T}{\partial x_j} \right) - \tau_{ij} \frac{\partial u_i}{\partial x_j} + \beta T \left(\frac{\partial p}{\partial x_j} + u_j \frac{\partial p}{\partial x_j} \right)$$
(3)

 $\frac{\partial(\rho u_i)}{\partial x_i} = 0$

Equation for the turbulent kinetic energy (k)162

163
$$\frac{\partial}{\partial x_i}(\rho k u_i) = \frac{\partial}{\partial x_j}(\alpha_k \mu_{eff} \frac{\partial k}{\partial x_j}) + G_k + G_b - \rho \varepsilon - Y_M \tag{4}$$

Equation for the energy dissipation (ε) 164

$$\frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_j}(\alpha_{\varepsilon} \mu_{eff} \frac{\partial \varepsilon}{\partial x_j}) + G_k C_{1\varepsilon} \frac{\varepsilon}{k} - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k}$$
(5)

166 *Component transport equation*

167

$$\nabla \cdot (\rho \vec{v} Y_i) = -\nabla \cdot \vec{J}_i + R_i + S_i \tag{6}$$

where τ_{ij} is the viscous shear stress $(\tau_{ij} = \mu \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i}\right)), \quad \mu_{eff}$ is the effective 168 kinematic viscosity ($\mu_{eff} = \mu + \mu_t$), G_k represents the generation of turbulence 169 kinetic energy (can be defined as $G_k = -\rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}$), α_k and α_{ε} are the turbulent 170 Prandtl numbers for k and ε ($\alpha_k = \alpha_{\varepsilon} = 1.3$), $C_{1\varepsilon}$ and $C_{2\varepsilon}$ are two constants of the 171 turbulent model ($C_{1\varepsilon} = 1.44$ and $C_{2\varepsilon} = 1.92$), $\vec{J_i}$ represents the diffusion flux of 172 species $(\vec{J}_i = -\rho D_{i,m} + R_i)$, R_i is the amount of component *i* produced or consumed 173 in the reaction, S_i is the additional rate, and Y_M denotes the total dissipation rate due 174 175 to the variable dilatation incompressible turbulence.

The Multiple Reference Frame (MRF) model is used to model the turbine region.
It determines the velocity of the moving region by adding the rotation velocity on the
original translational velocity. The velocity in the rotational region is given by:

179 $\overrightarrow{v_r} = \overrightarrow{v} - \overrightarrow{\omega} \times \overrightarrow{r}$

180 The governing equations of flow in the MRF model are modified as:

181 *Continuity equation*

182

 $\nabla \cdot (\rho \overrightarrow{v_r}) = 0 \tag{8}$

(7)

183 *Momentum equation*

$$\nabla \cdot (\rho \overrightarrow{v_r} \overrightarrow{v_r}) + \rho (2 \overrightarrow{\omega} \times \overrightarrow{v_r} + \overrightarrow{\omega} \times \overrightarrow{\omega} \times \overrightarrow{r}) + \rho \frac{\partial \overrightarrow{\omega}}{\partial t} \times \overrightarrow{r} = \nabla \cdot (\mu \nabla \overrightarrow{v_r}) + S_{\overrightarrow{v_r}}$$
(9)

185 where \vec{v} is the absolute velocity, $\vec{\omega}$ is the angular velocity vector, and \vec{r} is the 186 position vector.

187 The output power (P_t) can be computed as:

188

$$P_t = \frac{2\pi nM}{60} \tag{10}$$

where n is the rotation speed and M represents the total blade moments of the turbine.
The HPCR is simplified as a porous media. The governing equations of the HPCR
region are expressed as:

192 *Continuity equation:*

$$\nabla \cdot (\gamma \rho \vec{v}) = 0 \tag{11}$$

194 *Momentum equation:*

$$\nabla \cdot (\gamma \rho \vec{v}) = -\gamma \nabla p(\gamma \vec{\tau}) + \gamma \rho \vec{g} + S_{\Phi}$$
(12)

196 where γ is the porosity, $\vec{\tau}$ is the viscous stress tensor, and S_{ϕ} denotes the momentum 197 loss term $(S_{\phi} = -\left(\frac{\mu}{\kappa}\vec{v} + \frac{c}{2}\rho|\vec{v}|\vec{v}\right)).$

The permeability (*K*) and inertia coefficient (C) are respectively defined in Equations (13) and (14) (Wang et al., 2014).

200
$$K = \frac{D_P^2}{150} \frac{\gamma^3}{(1-\gamma)^2}$$
(13)

201
$$C = \frac{3.5}{D_P^2} \frac{(1-\gamma)}{\gamma^3}$$
 (14)

202 where D_P is the pore diameter.

The oxidation rate of CH_4 is given by (Haeger et al., 2004):

204
$$r_m = B \cdot \frac{B_1 c_1}{1 + B_1 c_1} \frac{B_2 c_2}{1 + B_2 c_2} \cdot SSA$$
(15)

where r_m is the reaction rate of CH₄ of the HPCR, c_1 and c_2 are respectively the concentrations of CH₄ and O₂, *B*, *B*₁, and *B*₂ are respectively equal to 5.37×10^{-7} , 2.42, and 4.60, and *SSA* is the specific surface area of the HPCR ($SSA = \frac{6(1-\gamma)}{D_P}$) (Ming et al., 2021b).

The CH₄ removal performance of the SCPP-HPCR is evaluated by the photocatalytic efficiency (Equation (16)) and purification rate (Equation (17)) of CH₄.

$$\varepsilon_{methane} = \frac{J_1 - J_2}{J_1} \times 100\% \tag{16}$$

211

 $\dot{m}_{methane} = Q_m (m_1 - m_2) \tag{17}$

where J_1 and J_2 are respectively the CH₄ concentrations at the inlet and outlet of the reactor, m_1 and m_2 are respectively the mass fractions of CH₄ at the entrance and exit, and Q_m is the mass flow rate of the SCPP-HPCR.

216

217 2.3 Boundary conditions

The SCPP-HPCR is powered by natural convection driven by the solar radiation. The boundary conditions for the collector inlet and chimney outlet are the pressure inlet and outlet, respectively. The collector surface is a convective heat transfer boundary,

and the coefficient is related to the ambient wind speed. The coefficient can be set to a 221 constant value of $10 \text{ W}/(\text{m}^2 \cdot \text{K})$ while ignoring the ambient wind effect (Tingzhen et al., 222 2006). The surfaces of the chimney and turbine are adiabatic. The conversion of solar 223 radiation to heat flux of the ground is an economical and effective method (Tingzhen et 224 al., 2008). The conversion coefficient is related to the location of the area, air quality, 225 and other factors. For example, the coefficient is 0.7 in a desert in northwest China, 226 which indicates that the ground heat flux is almost 600 W/m², corresponding to a solar 227 radiation of 857 W/m^2 (Ming et al., 2012). The details of the boundary conditions are 228 presented in Table 1. 229

Location	Туре	Value
Inlet of SCPP-HPCR	Pressure inlet	p = 0 Pa, $T = 293$ K
Outlet of SCPP-HPCR	Pressure outlet	p = 0 Pa
Surface of ground	Heat flux	$q = 200 - 600 \text{ W/m}^2$
Surface of canopy	Convection	$T = 293 \text{ K}, h = 10 \text{ W/(m^2 \cdot \text{K})}$
Surface of chimney	Adiabatic	$q = 0 \text{ W/m}^2$
Turbine	MRF	$\omega = 0 \sim 200 \text{ rpm}$
HPCR	Porous media	

231

230

232 2.4 Grid system and numerical procedure

The structured grid system has high better computational stability and shorter solution time. Structured grids are used for the whole computational domain, except the 3-D turbine, whose structure is complex. Moreover, the local grids of blade surface and HPCR region are densified to more correctly simulate the mass transfer process. The grid system as shown in Fig 2.

and (b) grid distribution on the surface of the turbine.

244

The grid-independent is checked using three grid systems with grid numbers of 4,071,561, 3,112,516, and 2,316,115. The average velocities of the outlet are 8.61, 8.27, and 8.01 m/s, respectively, under G = 857 W/m² and $\omega = 100$ rpm. The relative error of the simulation results between different grid systems is less than 3.94%. In this study, the grid system with the number of 3,112,516 is considered in the simulation.

The ANSYS FLUENT 19.0 software is used for the numerical simulation. The SIMPLE algorithm is used for the pressure–velocity coupling scheme. The PRESTO divergence scheme is used in the pressure term, and the upwind scheme is used in the other terms. The calculation results converged when the variations of the concentration of CH_4 and the velocity at the chimney outlet are less than 0.001, or the maximum residuals of all the equations are less than 10^{-5} .

256

257 2.5 Validation

The velocity of the chimney outlet and the photocatalytic efficiency of CH₄ are 258 compared with the data presented in the reference (Ming et al., 2021b) to validate the 259 numerical model at $G = 857 \text{ W/m}^2$, $\omega = 0 \text{ rpm}$, and $\gamma = 0.85$. The obtained results 260 are presented in Table 2. It can be seen that the velocity at the chimney outlet increased 261 while the photocatalytic efficiency decreased with the increase of the pore diameter. 262 The maximum relative error for the chimney outlet velocity is 8.55% when $D_P = 2$ mm, 263 while the relative errors for other values of D_P are less than 4%. In fact, the study of 264 (Ming et al., 2021b) did not build the 3-D turbine causing the grid discrepancy to be the 265 primary reason for the error. In general, the results of the numerical simulations in this 266 study are reasonable. 267

Table 2. Verif	sults	
Simulation results	Date form reference	$\mathbf{D}_{\mathbf{a}}$
Simulation results	(Ming et al., 2021b)	Kelauve error (%)

Pore	Velocity	Photocatalytic	Velocity	Photocatalytic		Photocatalytic
diameter	at outlet	efficiency of	at outlet	efficiency of	Velocity	
(mm)	(m/s)	CH ₄ (%)	(m/s)	CH ₄ (%)		efficiency
2	8.42	96.32	7.70	96.02	8.55	0.31
2.5	8.56	93.56	8.27	92.42	3.39	1.22
3	8.71	89.40	8.56	88.38	1.72	1.14
3.5	9.02	84.97	8.81	84.12	2.33	0.99
4	9.29	80.47	8.92	80.11	3.98	0.44

271

3. Result and analysis

In this section, the influence of the pore size on the performance of the SCPP-HPCR is first discussed for $\gamma = 0.85$. The porosity of HRCR is then optimized to the equivalent CO₂ emission. Finally, the solar radiation data of Qianyanzhou, China, are considered as example to estimate the CO₂ emission reduction of the system for one day.

278

279 *3.1 Analysis of flow field*

Most of the solar energy is locked in the collector for air heating due to its oneway-screen property (Ming et al., 2017). The heated airflow could form a density difference with the ambient air, and be gradually collected at the bottom of the chimney to develop a strong upward airflow due to the buoyancy effect.

Fig. 3 shows the pressure distribution of the plane of Y = 0 m and Z = 1 m. There are two main contributors of resistance while the hot air flow is moving. Firstly, the porous structure can impede the passage of the airflow, generating a pressure gradient of roughly 93.3 Pa. Secondly, the airflow at the bottom of the chimney converts its own kinetic energy into mechanical energy, causing the turbine to rotate in to generate electricity. The maximum pressure differential is almost 942.7 Pa, with a significant positive pressure at the bottom and a negative pressure above the blade.

Fig. 4 shows the velocity distribution of the plane of Y = 0 m and Z = 1 m. The airflow enters at the entrance of the canopy and converges towards the center with increasing speed. The overall velocity is still modest (not exceeding 2 m/s), while the velocity at the edge of canopy is just 0.35 m/s, with a major increase only occurring near the chimney bottom. The airflow overcomes gravity and keeps going upward after passing through the turbine, and the velocity gradually decreases. However, the velocity of the air at the center of the wheel remains low.

Fig. 4. Contours of the velocity distribution of the plane at $G = 857 \text{ W/m}^2$, $\omega = 100 \text{ rpm}$, and $D_P = 4 \text{ mm}$: (a) plane at Y = 0 m and (b) plane at Z = 1 m.

309

310

Fig. 5 shows the CH₄ distribution of the plane of Y = 0 m and Z = 1 m. The natural 314 convection pulls CH₄ into the system at a concentration of 1.87 ppm from the 315 atmosphere, where it is continually degrading in the HPCR along a distinct 316 concentration gradient. The CH₄ degradation process is confined in, relative to the plate 317 reactor (Ming et al., 2022; Xiong et al., 2022), and the distribution appears hierarchical. 318 The CH₄ is evenly distributed and remained unchanged in the system after passing 319 through the HPCR. For instance, the CH₄ concentration at the chimney outlet is 0.27 320 ppm and the photocatalytic efficiency is 85.56% at $G = 857 \text{ W/m}^2$, $\omega = 100 \text{ rpm}$, and 321 $D_P = 4 \text{ mm.}$ 322

331 *3.2 Performance analysis of SCPP-HPCR*

Fig. 6 shows the average velocity at the chimney outlet. The airflow resistance 332 through the turbine area increased as the turbine speed increased, so that more kinetic 333 334 energy of the air is transformed into mechanical energy of the turbine. In addition, when the D_P of the honeycomb channel is small, the viscous resistance caused by the porous 335 medium can dramatically increase, and the chimney exit velocity can decrease. 336 According to the experimental data provided in Haff (Haaf, W., 1984), the exit velocity 337 of the chimney was 9 m/s with $G = 857 \text{ W/m}^2$ and $\omega = 100 \text{ rpm}$. The exit velocity loss 338 is 8.2% when a reaction zone of $D_P = 4$ mm is within the canopy, while it is 15.7% for 339 $D_P = 2 \text{ mm.}$ 340

341

Fig. 6. Average velocity at the chimney outlet under different turbine speeds at $G = 857 \text{ W/m}^2$.

345

342

The resistance of the turbine and reactor (Fig. 7), as well as the turbine speed, are the primary factors that affect the air flow inside the SCPP-HPCR. When the turbine speed increases, the pressure drop through the reaction zone constantly decreases, while the pressure drop through the turbine increases. An excessively high turbine speed can lower the mass flow rate of the system, obstruct airflow inside the canopy, and decrease the pressure loss caused by the HPCR. The latter is the primary source of internal resistance when the turbine speed is low, but the turbine area is the primary source at high turbine speed. Furthermore, the overall pressure loss inside the system is first decreased and then increased. The overall internal pressure loss of the SCPP-HPCR is

minimized to 176.84 Pa for $G = 857 \text{ W/m}^2$, $\omega = 80 \text{ rpm}$, and $D_P = 2 \text{ mm}$.

356

357

Fig. 7. Pressure drop of the turbine and HPCR under different turbine speeds at $G = 857 \text{ W/m}^2$.

360

The two performance criteria of the SCPP-HPCR for removing atmospheric CH₄ 361 are the photocatalytic efficiency and purification rate, as shown in Fig. 8. The former 362 describes the level of CH₄ molecule purification, while the latter calculates the amount 363 of CH₄ damaged by the system. The photocatalytic efficiency of CH₄ can be improved 364 by increasing the turbine speed or reducing the reactor particle size. However, 365 decreasing the mass flow rate of the system sharply reduces the purification rate. The 366 photocatalytic performance of the system can be enhanced more by reducing the 367 particle size in the honeycomb channel than by speeding up the turbine. For instance, 368 the efficiency of the CH₄ photocatalytic is boosted by roughly 20% when the particle 369 size is decreased from 4 mm to 2 mm, but only by 8% when the turbine speed is 370 increased to 200 rpm. The impact of the turbine speed on the photocatalytic efficiency 371

becomes insignificant for $D_P \leq 3$ mm.

Increasing the turbine speed can only slightly lower the purge rate of CH₄, in the 373 case where the turbine speed is low. A linear relationship between the turbine speed and 374 the rate of purification can be observed when the turbine speed is high. The primary 375 reason for the rate of purification decrease is the loss of mass flow rate brought by the 376 increased turbine speed. The curves of the purification rate of CH₄ are pretty close for 377 reactors having particle diameters of 2.5 mm, 3 mm, and 3.5 mm. Although the reactor 378 379 with a smaller particle size seems more effective in lowering the atmospheric CH₄, the large pressure loss can undoubtedly have an adverse effect on the overall performance 380 of the system. In addition, CH₄ generally has a high photocatalytic efficiency for $D_P =$ 381 3 mm. 382

383 384

(a)

Fig. 8. Degradation of CH₄ under different turbine speeds at G = 857 W/m²: (a) photocatalytic efficiency of CH₄ and (b) purification rate of CH₄.

385

386

The primary source of electricity for most countries is still the thermal power plants. Many pollutants are emitted during the burning of fossil fuels, such as CO₂, which is released on 0.95 kg for 1 kW of produced energy (Mittal et al., 2012). The SCPP can produce up to 36 kW of power and it is a zero-energy zero-pollution power source, which significantly reduces the CO₂ emissions from thermal power plants (Pasumarthi and Sherif, 1998).

The SCPP-HPCR is a CH_4 negative emission technology able to face the climate change using CO_2 equivalents. CH_4 had 84 times the GWP of CO_2 on a 20-year scale, which showed that reducing 1 kg of CH_4 is comparable to reducing 84 kg of CO_2 (Jackson et al., 2019). The CO_2 emission reduction rate of the SCPP-HPCR can be expressed as:

$$C_{eq} = \dot{m}_{CH_4} \times 84 + \dot{m}_{1_{CO_2}} - \dot{m}_{2_{CO_2}} \tag{18}$$

402 where \dot{m}_{CH_4} is the purification rate of CH₄, $\dot{m}1_{CO_2}$ is the reduction rate of CO₂ 403 emission from coal-fired power station, and $\dot{m}2_{CO_2}$ is the generation rate of CO₂ 404 from photocatalytic CH₄. Fig. 9 shows the rate of CO_2 emission reduction of SCPP-HPCR. It can be seen that the rate of CO_2 emission reduction increases and then decreases at different reactor particle diameters. The emission reduction rate is nearly identical at lower turbine speeds, mostly because generating electricity from turbines at lower speeds results in less CO_2 reduction. The peak CO_2 reduction rate corresponds to a turbine speed between 160 rpm and 180 rpm for different particle sizes. In addition, the larger the particle size, the greater the reduction rate.

Fig. 9. Rate of CO₂ emission reduction under different turbine speeds at G = 857W/m².

415

412

416 *3.3 Optimization of the HPCR porosity*

Porosity is another crucial factor that affected the overall performance of the SCPP-HPCR. The highest photocatalytic efficiency and purification rate are for $D_P = 3$ mm, as mentioned in section 3.2. Fig. 10 shows the CH₄ distribution in the HPCR at *G* $= 857 \text{ W/m}^2$, $\omega = 180 \text{ rpm}$, and $D_P = 3 \text{ mm}$. It is less difficult for atmospheric CH₄ to enter the HPCR as the porosity of the reactor increases because of the greater airflow resistance. The length of the concentration gradient of CH₄ in the reactor expands as the reactor's porosity, and the uniform concentration at the exit of the HPCR.

426 Fig. 10. Contours of the CH₄ distribution in the HPCR at $G = 857 \text{ W/m}^2$, $\omega =$ 427 180 rpm, and $D_P = 3 \text{ mm}$: (a) $\gamma = 0.70$, (b) $\gamma = 0.75$, (c) $\gamma = 0.80$, (d) $\gamma = 0.85$ 428 and (e) $\gamma = 0.90$.

429

425

The impact of reactors with various porosities on the photocatalytic performance 430 of the system is studied at $D_P = 3 \text{ mm}$ (Fig. 11). The HPCR with less porosity can have 431 higher the SSA and longer times for CH₄ to contact with the photocatalyst when the 432 particle diameter is kept constant. In addition, a decrease in porosity can make the 433 porous media more viscous resistant, and impede the flow of gas. The purification rate 434 peaks at a porosity of 0.85, while the photocatalytic efficiency decreases with the 435 increase in the porosity. The CH₄ photocatalytic efficiency is 93.26% and the 436 purification rate is 0.55 g/s at G = 857 W/m², $D_P = 3$ mm, and $\gamma = 0.85$. 437

440 Fig. 11. Influence of the porosity on the CH₄ degradation performance of the SCPP-

HPCR at $G = 857 \text{ W/m}^2$.

441

442

443 *3.4 Estimation of CO*₂ *emission reduction*

Based on solar radiation data from July 24, 2016 (Ming et al., 2021b), the 444 445 performance characteristics of the system for one day of operation were evaluated while assuming that an SCPP-HPCR will be built in Qianyanzhou, China. $D_P = 3$ mm, $\gamma =$ 446 0.85, and a turbine at a constant speed of 180 rpm are chosen as the optimal parameters 447 of the SCPP-HPCR. Ten groups of the solar radiation from 7:00 am to 5:00 pm are 448 449 divided, and input parameters are established at one-hour intervals. The volumetric flow rate, turbulent pressure drop, output power, and CO₂ emission reduction of the system 450 are presented in Table 3. The time-by-time photocatalytic performance curves of the 451 452 system are shown in Fig. 12.

From 9:00 am until 3:00 pm, the solar radiation is high (more than 700 W/m²). The solar radiation of a day first increased and then decreased. The rate of CO_2 reduction and the power generation of the turbine both peaks during this time period. The photocatalyst activity is fully stimulated due to the strong UV light in the environment, and the photocatalytic efficiency and rate of methane reaches their maximum values during this period. 375.52 kg of CO_2 and 2.38 kg of CH₄ can be mitigated by the system in one day of operation.

Table 3. Performance parameters of the SCPP-HPCR on July 24, 2016 in

Qianyanzhou, China.						
Time	Solar	Volume	Pressure	Output	CO_2	
	radiation	flow rate of	drop of	power (kW)	emission	
	(W/m ²)	the system	turbine (Pa)		reduction	
		(m ³ /s)			(kg/h)	
7:00-8:00	270	323.98	102.99	8.89	8.46	
8:00-9:00	474	416.42	126.41	25.39	24.14	
9:00-10:00	715.3	501.12	146.45	43.29	41.15	
10:00-11:00	837.5	537.99	154.84	51.86	49.29	
11:00-12:00	892.8	555.37	158.82	56.07	53.29	
12:00-13:00	884.7	551.57	157.92	55.15	52.41	
13:00-14:00	889.2	552.79	158.28	55.45	52.70	
14:00-15:00	716.1	501.27	146.50	43.33	41.19	
15:00-16:00	607.2	465.49	138.16	35.44	33.68	
16:00-17:00	407.5	388.93	119.83	20.21	19.21	

465 Fig. 12. Performance of CH₄ degradation on July 24, 2016 in Qianyanzhou, China.

As a massive energy storage layer, the soil can turn part of the solar energy into internal energy at day and release thermal energy at night to heat the air inside the collector, creating a steady thermal airflow and achieving all-weather intermittent power generation (Guo et al., 2016). The HPCR cannot perform well due to the lack of the UV light at night. The capacity of the system to reduce CO_2 can be further improved if an appropriate UV light source system is constructed around the HPCR (Wang et al., 2014).

474

475 4. Discussion

The high construction costs are still a concern to be considered even though SCPP-476 HPCR can remove atmospheric CH₄ while simultaneously producing electricity. The 477 SCPP building cost is around \$1.25 million in the desert, the Gobi, and other regions 478 where lands are cheap (Abdelsalam et al., 2020). The original investment can be 479 returned after 15 years of operation owing to the generating power of the system 480 (Krätzig, 2013). SCPP is a long-term investment that will yield off with an expected 481 482 lifespan of 80 years (Harte et al., 2013). It has the advantages of a simple structure and low maintenance. In comparison to other methods currently used to remove 483 atmospheric CH₄, such as photocatalysis, thermal catalysis, electrocatalysis, etc., a 484 large and continuous amount of energy must be consumed in to achieve the appropriate 485 reaction conditions and provide steady airflow (Sher Shah et al., 2020). SCPP-HPCR 486 forms a steady air stream to degrade atmospheric CH₄ by the HPCR and create 487 economic value by the turbine power generation with no energy usage. In the future, 488 489 highly selective photocatalysts can be used to remove other atmospheric pollutants.

490

491 **5. Conclusion**

492 As a novel negative emission technology, the SCPP-HPCR can effectively reduce 493 the atmospheric CH_4 concentration, ultimately alleviating the global warming effect. In 494 this paper, the CH_4 degradation and electricity generation performance of the SCPP-495 HPCR are studied based on a 3-D numerical model. The impact of the system on the 496 environment is evaluated by the CO_2 equivalent. The following conclusions can be 497 drawn.

498 (1) The HPCR and the turbine area are the primary sources of internal resistance 499 for low and high turbine speeds, respectively. The overall internal pressure loss of the 500 SCPP-HPCR is minimized to 176.84 Pa for G = 857 W/m², $\omega = 80$ rpm, and $D_P = 2$ 501 mm.

502 (2) The photocatalytic efficiency of CH_4 can be enhanced by increasing the turbine 503 speed or decreasing the D_P of the reactor. However, the latter can improve the efficiency 504 more than the former.

505 (3) 375.52 kg of CO₂ and 2.38 kg of CH₄ can be mitigated by an SCPP-HPCP 506 system built in Qianyanzhou, China, in one day for $D_P = 3$ mm, $\gamma = 0.85$, and $\omega =$ 507 180 rpm.

508

509 Acknowledgments

This research was supported by the National Key Research and Development Plan (Grant No. 2019YFE0197500), the European Commission H2020 Marie Curie Research and Innovation Staff Exchange (RISE) award (Grant No. 871998), the National Natural Science Foundation of China (Grant No. 52278123), and the Fundamental Research Funds for the Central Universities (Grant No. 225206002).

515

516 References

- 517 Abdelsalam, E., Kafiah, F., Alkasrawi, M., Al-Hinti, I., Azzam, A., 2020. Economic Study of Solar
- 518 Chimney Power-Water Distillation Plant (SCPWDP). Energies 13(11), 2789.
- 519 Ahmed, K., Wang, Y., Bai, Y., Sekar, K., Li, W., 2022. A carbon nanowire-promoted Cu2O/TiO2
- nanocomposite for enhanced photoelectrochemical performance. New Journal of Chemistry 46(32),15495-15503.
- Allen, D., 2016. Attributing Atmospheric Methane to Anthropogenic Emission Sources. Acc Chem Res 49(7), 1344-1350.
- Brenneis, R.J., Johnson, E.P., Shi, W., Plata, D.L., 2021. Atmospheric- and Low-Level Methane
 Abatement via an Earth-Abundant Catalyst. ACS Environmental Au 2(3), 223-231.
- 526 Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo,
- 527 A., Hackett, L.A., 2018. Carbon capture and storage (CCS): the way forward. Energy & Environmental
- 528 Science 11(5), 1062-1176.
- 529 Cao, Q., Pui, D.Y., Lipinski, W., 2015. A concept of a novel solar-assisted large-scale cleaning system

- 530 (SALSCS) for urban air remediation. Aerosol and air quality research 15(1), 1-10.
- 531 Cao, Q.F., Kuehn, T.H., Shen, L., Chen, S.C., Zhang, N.N., Huang, Y., Cao, J.J., Pui, D.Y.H., 2018.
- 532 Urban-scale SALSCS, Part I: Experimental Evaluation and Numerical Modeling of a Demonstration
- 533 Unit. Aerosol Air Qual Res 18(11), 2865-2878.
- Chen, X., Li, Y., Pan, X., Cortie, D., Huang, X., Yi, Z., 2016. Photocatalytic oxidation of methane over
 silver decorated zinc oxide nanocatalysts. Nature communications 7(1), 1-8.
- de Richter, R., Ming, T.Z., Davies, P., Liu, W., Caillol, S., 2017. Removal of non-CO2 greenhouse gases
- 537 by large-scale atmospheric solar photocatalysis. Prog Energ Combust 60, 68-96.
- 538 Fuss, S., Lamb, W.F., Callaghan, M.W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira
- Garcia, W., Hartmann, J., Khanna, T.J.E.R.L., 2018. Negative emissions—Part 2: Costs, potentials and
 side effects. 13(6), 063002.
- 541 Galpern, D.M., 2021. A View from Glasgow. Sustainability and Climate Change 14(6), 360-365.
- 542 Guo, P., Li, J., Wang, Y., 2014. Numerical simulations of solar chimney power plant with radiation model.
 543 Renewable Energy 62, 24-30.
- 544 Guo, P.H., Li, J.Y., Wang, Y.F., Wang, Y., 2016. Evaluation of the optimal turbine pressure drop ratio for 545 a solar chimney power plant. Energ Convers Manage 108, 14-22.
- Haaf, W., 1984. Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant.
 International Journal of Sustainable Energy 2(2), 141-161.
- Haaf, W., 1984. Solar tower, part ii: Preliminary test results from the manzanares pilot plant. Solar Energy2, 41-61.
- 550 Haeger, A., Kleinschmidt, O., Hesse, D., 2004. Kinetics of photocatalyzed gas reactions using titanium
- dioxide as the catalyst Part II: Photocatalyzed total oxidation of alkanes with oxygen. Chem Eng Technol
 27(9), 1019-1026.
- Harte, R., Höffer, R., Krätzig, W.B., Mark, P., Niemann, H.-J., 2013. Solar updraft power plants:
 Engineering structures for sustainable energy generation. Engineering Structures 56, 1698-1706.
- House, K.Z., Baclig, A.C., Ranjan, M., van Nierop, E.A., Wilcox, J., Herzog, H.J., 2011. Economic and
 energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci U S A 108(51), 20428-20433.
- 557 Jackson, R.B., Solomon, E.I., Canadell, J.G., Cargnello, M., Field, C.B., 2019. Methane removal and
- atmospheric restoration. Nat Sustain 2(6), 436-438.
- 559 Krätzig, W.B., 2013. Physics, computer simulation and optimization of thermo-fluidmechanical
 560 processes of solar updraft power plants. Sol Energy 98, 2-11.
- Kuylenstierna, J.C., Michalopoulou, E., Malley, C., 2021. Global Methane Assessment: Benefits andcosts of mitigating methane emissions.
- Li, Y., Li, J., Zhang, G., Wang, K., Wu, X.J.A.S.C., Engineering, 2019. Selective photocatalytic oxidation
- of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium. 7(4),
 4382-4389.
- Li, Z., Pan, X., Yi, Z.J.J.o.M.C.A., 2019. Photocatalytic oxidation of methane over CuO-decorated ZnO
 nanocatalysts. 7(2), 469-475.
- Ma, H.K., Yang, H.A., 2010. A Comparative Study of TiO2 Nanoparticles Synthesized in Premixed and
 Diffusion Flames. Journal of Thermal Science 19(6), 567-575.
- 570 Maia, C.B., Silva, J.D.C., 2022. Thermodynamic assessment of a small-scale solar chimney. Renewable
 571 Energy 186, 35-50.
- 572 Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y.,
- 573 Goldfarb, L., Gomis, M., 2021. Climate change 2021: the physical science basis. Contribution of working

- group I to the sixth assessment report of the intergovernmental panel on climate change, v-vii.
- 575 Ming, T.Z., de Richter, R., Oeste, F.D., Tulip, R., Caillol, S., 2021a. A nature-based negative emissions
- technology able to remove atmospheric methane and other greenhouse gases. Atmos Pollut Res 12(5),101035.
- 578 Ming, T.Z., Gui, H.Y., Shi, T.H., Xiong, H.B., Wu, Y.J., Shao, Y.M., Li, W., Lu, X.H., de Richter, R.,
- 579 2021b. Solar chimney power plant integrated with a photocatalytic reactor to remove atmospheric580 methane: A numerical analysis. Sol Energy 226, 101-111.
- 581 Ming, T.Z., Wang, X.J., de Richter, R.K., Liu, W., Wu, T.H., Pan, Y., 2012. Numerical analysis on the
- influence of ambient crosswind on the performance of solar updraft power plant system. Renew Sust
 Energ Rev 16(8), 5567-5583.
- 584 Ming, T.Z., Wu, Y.J., de Richter, R.K., Liu, W., Sherif, S.A., 2017. Solar updraft power plant system: A
 585 brief review and a case study on a new system with radial partition walls in its collector. Renew Sust
 586 Energ Rev 69, 472-487.
- 587 Ming, T.Z., Xiong, H.B., Shi, T.H., Wu, Y.J., Wang, C.X., Wen, Y.G., Li, W., de Richter, R., Zhou, N.,
- 588 2022. A novel green technology: Reducing carbon dioxide and eliminating methane from the atmosphere.
- 589 International Journal of Energy Research 46(14), 20107-20120.
- 590 Minx, J.C., Lamb, W.F., Callaghan, M.W., Fuss, S., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de
- 591 Oliveira Garcia, W., Hartmann, J.J.E.R.L., 2018. Negative emissions—Part 1: Research landscape and
 592 synthesis. 13(6), 063001.
- 593 Mittal, M.L., Sharma, C., Singh, R., 2012. Estimates of emissions from coal fired thermal power plants
 594 in India, 2012 International emission inventory conference. pp. 13-16.
- Pastohr, H., Kornadt, O., Gürlebeck, K., 2004. Numerical and analytical calculations of the temperature
 and flow field in the upwind power plant. International Journal of Energy Research 28(6), 495-510.
- 597 Pasumarthi, N., Sherif, S., 1998. Experimental and theoretical performance of a demonstration solar
- chimney model—Part I: mathematical model development. International Journal of Energy Research
 22(3), 277-288.
- Price, S.J., Sherlock, R.R., Kelliher, F.M., McSeveny, T.M., Tate, K.R., Condron, L.M., 2004. Pristine
 New Zealand forest soil is a strong methane sink. Global Change Biol 10(1), 16-26.
- Sanchez, D.L., Johnson, N., McCoy, S.T., Turner, P.A., Mach, K.J., 2018. Near-term deployment of
 carbon capture and sequestration from biorefineries in the United States. Proc Natl Acad Sci U S A
 115(19), 4875-4880.
- 605 Sekar, K., Chuaicham, C., Vellaichamy, B., Li, W., Zhuang, W., Lu, X., Ohtani, B., Sasaki, K., 2021.
- 606 Cubic Cu2O nanoparticles decorated on TiO2 nanofiber heterostructure as an excellent synergistic
- 607 photocatalyst for H2 production and sulfamethoxazole degradation. Applied Catalysis B: Environmental608 294, 120221.
- 609 Sher Shah, M.S.A., Oh, C., Park, H., Hwang, Y.J., Ma, M., Park, J.H., 2020. Catalytic Oxidation of
- 610 Methane to Oxygenated Products: Recent Advancements and Prospects for Electrocatalytic and
 611 Photocatalytic Conversion at Low Temperatures. Adv Sci (Weinh) 7(23), 2001946.
- 612 Tingzhen, M., Wei, L., Guoliang, X., 2006. Analytical and numerical investigation of the solar chimney
- 613 power plant systems. International Journal of Energy Research 30(11), 861-873.
- 614 Tingzhen, M., Wei, L., Guoling, X., Yanbin, X., Xuhu, G., Yuan, P., 2008. Numerical simulation of the
- solar chimney power plant systems coupled with turbine. Renewable Energy 33(5), 897-905.
- 616 Vazquez-Ruiz, A., Navarro, J.M.A., Hinojosa, J.F., Xamán, J.P., 2022. Computational Fluid Dynamics
- and Experimental Analysis of the Heat Transfer in a Room With a Roof Solar Chimney. Journal of

- **618** Thermal Science and Engineering Applications 14(4), 1-26.
- 619 Vellinga, P., Swart, R., 1991. The greenhouse marathon: A proposal for a global strategy. Climatic Change

- Wang, Q., Xiong, H., Ming, T., 2022. Methods of Large-Scale Capture and Removal of AtmosphericGreenhouse Gases. Energies, p. 6560.
- 623 Wang, X., Tan, X., Yu, T., 2014. Modeling of Formaldehyde Photocatalytic Degradation in a Honeycomb
- 624 Monolith Reactor Using Computational Fluid Dynamics. Industrial & Engineering Chemistry Research
- **625** 53(48), 18402-18410.
- 626 Wang, Y., Ming, T., Li, W., Yuan, Q., de Richter, R., Davies, P., Caillol, S.J.G.G.S., Technology,
- 627 Atmospheric Removal of Methane by enhancing the natural hydroxyl radical sink.
- 628 Witze, A., 2019. Dramatic sea-ice melt caps tough Arctic summer. Nature 573(7774), 320-322.
- Kiong, H., Ming, T., Wu, Y., Wang, C., Chen, Q., Li, W., Mu, L., de Richter, R., Yuan, Y., 2022. Numerical
 analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global
 warming under ambient crosswind. Renewable Energy 201, 678-690.
- 632 Zhang, J., Wang, Y., Wang, Y., Bai, Y., Feng, X., Zhu, J., Lu, X., Mu, L., Ming, T., de Richter, R., Li, W.,
- 633 2022. Solar Driven Gas Phase Advanced Oxidation Processes for Methane Removal Challenges and634 Perspectives. Chemistry, e202201984.
- 635 Zuo, L., Liu, Z.H., Dai, P.Z., Qu, N., Ding, L., Zheng, Y., Ge, Y.T., 2021. Economic performance
- evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat
- 637 after parameter optimization. Energy 227, 120496.
- 638 Zuo, L., Liu, Z.H., Ding, L., Qu, N., Dai, P.Z., Xu, B.F., Yuan, Y., 2020. Performance analysis of a wind
- 639 supercharging solar chimney power plant combined with thermal plant for power and freshwater
- 640 generation. Energ Convers Manage 204, 112282.
- 641 Zuo, L., Yan, Z., Zhou, T., Liu, S., Zheng, Y., Ge, Y., 2022. Study on the Influence of Windproof Cylinder
- on the Performance of Solar Vortex Power-desalination Integrated System, 2022 IEEE 5th International
- Electrical and Energy Conference (CIEEC). IEEE, pp. 1821-1825.

^{620 18(1),} vii-xii.