25 research outputs found

    A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity

    Get PDF
    A robust binary hydrogen-bonded supramolecular organic framework (SOF-7) has been synthesized by solvothermal reaction of 1,4-bis-(4-(3,5-dicyano-2,6 dipyridyl)dihydropyridyl)benzene (1) and 5,5’-bis-(azanediyl)-oxalyl-diisophthalic acid (2). Single crystal X-ray diffraction analysis shows that SOF-7 comprises 2 and 1,4-bis-(4-(3,5-dicyano-2,6-dipyridyl)pyridyl)benzene (3), the latter formed in situ from the oxidative dehydrogenation of 1. SOF-7 shows a three-dimensional four-fold interpenetrat-ed structure with complementary O−H···N hydrogen bonds to form channels that are decorated with cyano- and amide-groups. SOF-7 exhibits excellent thermal stability and sol-vent and moisture durability, as well as permanent porosity. The activated desolvated material SOF-7a shows high CO2 sorption capacity and selectivity compared with other po-rous organic materials assembled solely through hydrogen bonding

    Triptycene-based organic molecules of intrinsic microporosity

    Get PDF
    Four Organic Molecules of Intrinsic Microporosity (OMIMs) were prepared by fusing triptycene-based components to a biphenyl core. Due to their rigid molecular structures that cannot pack space efficiently, these OMIMs form amorphous materials with significant microporosity as demonstrated by apparent BET surface areas in the range of 515–702 m2 g–1. Bulky cyclic 1â€Č,2â€Č,3â€Č,4â€Č-tetrahydro-1â€Č,1â€Č,4â€Č,4â€Č-tetramethylbenzo units placed on the triptycene termini are especially efficient at enhancing microporosity

    Tunable Porous Organic Crystals: Structural Scope and Adsorption Properties of Nanoporous Steroidal Ureas

    Get PDF
    Previous work has shown that certain steroidal bis-(N-phenyl)ureas, derived from cholic acid, form crystals in the P61 space group with unusually wide unidimensional pores. A key feature of the nanoporous steroidal urea (NPSU) structure is that groups at either end of the steroid are directed into the channels and may in principle be altered without disturbing the crystal packing. Herein we report an expanded study of this system, which increases the structural variety of NPSUs and also examines their inclusion properties. Nineteen new NPSU crystal structures are described, to add to the six which were previously reported. The materials show wide variations in channel size, shape, and chemical nature. Minimum pore diameters vary from ∌0 up to 13.1 Å, while some of the interior surfaces are markedly corrugated. Several variants possess functional groups positioned in the channels with potential to interact with guest molecules. Inclusion studies were performed using a relatively accessible tris-(N-phenyl)urea. Solvent removal was possible without crystal degradation, and gas adsorption could be demonstrated. Organic molecules ranging from simple aromatics (e.g., aniline and chlorobenzene) to the much larger squalene (Mw = 411) could be adsorbed from the liquid state, while several dyes were taken up from solutions in ether. Some dyes gave dichroic complexes, implying alignment of the chromophores in the NPSU channels. Notably, these complexes were formed by direct adsorption rather than cocrystallization, emphasizing the unusually robust nature of these organic molecular hosts

    Characterizing the Structure of Organic Molecules of Intrinsic Microporosity by Molecular Simulations and X-ray Scattering

    No full text
    The design of a new class of materials, called organic molecules of intrinsic microporosity (OMIMs), incorporates awkward, concave shapes to prevent efficient packing of molecules, resulting in microporosity. This work presents predictive molecular simulations and experimental wide-angle X-ray scattering (WAXS) for a series of biphenyl-core OMIMs with varying end-group geometries. Development of the utilized simulation protocol was based on comparison of several simulation methods to WAXS patterns. In addition, examination of the simulated structures has facilitated the assignment of WAXS features to specific intra- and intermolecular distances, making this a useful tool for characterizing the packing behavior of this class of materials. Analysis of the simulations suggested that OMIMs had greater microporosity when the molecules were the most shape-persistent, which required rigid structures and bulky end groups. The simulation protocol presented here allows for predictive, presynthesis screening of OMIMs and similar complex molecules to enhance understanding of their structures and aid in future design efforts

    CCDC 713074: Experimental Crystal Structure Determination

    No full text
    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
    corecore