21 research outputs found

    艢cie偶ki edukacyjne na Wydziale Chemicznym.

    Get PDF

    Identification of transplanted pancreatic islet cells by radioactive Dithizone-[131I]-Histamine conjugate. Preliminary report

    Get PDF
    Background: The unique mechanism of dithizone action in the interior of the viable pancreatic islet suggests the possible development of a specific radiopharmaceutical that may have a potential clinical application in the diagnosis of the pancreatic organ allografts or islets rejection. The radiodiagnostic properties of the newly developed radioactive analogue of dithizone, i.e. Dithizone-[131I]-Histamine conjugate have been evaluated in the present study. METHODS: The four islet cells transplantation models were chosen for this purpose. The most important feature of the Dithizone-[131I]-Histamine conjugate is its possessed ability of zinc chelation. As was presented in the recent study, the conjugate stains pink-reddish the isolated pancreatic islets in vitro. Among the studied transplantation models, only the islets grafting under testis capsule enabled determination of the pancreatic islets in rats by radioactive Dithizone-[131I]-Histamine conjugate. The level of the radioactivity in the recipient testis (right) was almost two times higher compared to the controls (0.24 vs. 0.13% ID/g, respectively). CONCLUSIONS:These preliminary data demonstrate the ability of the developed radioactive analogue of dithizone for in vivo identification of transplanted pancreatic islets, and suggests a potential clinical application of the radiodithizone in the diagnosis of the pancreatic islet rejection

    Image_1_Phase-variable Type I methyltransferase M.NgoAV from Neisseria gonorrhoeae FA1090 regulates phasevarion expression and gonococcal phenotype.TIF

    No full text
    The restriction-modification (RM) systems are compared to a primitive, innate, prokaryotic immune system, controlling the invasion by foreign DNA, composed of methyltransferase (MTase) and restriction endonuclease. The biological significance of RM systems extends beyond their defensive function, but the data on the regulatory role of Type I MTases are limited. We have previously characterized molecularly a non-canonical Type I RM system, NgoAV, with phase-variable specificity, encoded by Neisseria gonorrhoeae FA1090. In the current work, we have investigated the impact of methyltransferase NgoAV (M.NgoAV) activity on gonococcal phenotype and on epigenetic control of gene expression. For this purpose, we have constructed and studied genetic variants (concerning activity and specificity) within M.NgoAV locus. Deletion of M.NgoAV or switch of its specificity had an impact on phenotype of N. gonorrhoeae. Biofilm formation and planktonic growth, the resistance to antibiotics, which target bacterial peptidoglycan or other antimicrobials, and invasion of human epithelial host cells were affected. The expression of genes was deregulated in gonococcal cells with knockout M.NgoAV gene and the variant with new specificity. For the first time, the existence of a phasevarion (phase-variable regulon), directed by phase-variable Type I MTase, is demonstrated.</p

    KAEA (SUDPRO), a member of the ubiquitous KEOPS/EKC protein complex, regulates the arginine catabolic pathway and the expression of several other genes in Aspergillus nidulans

    Get PDF
    The kaeAKAE1 (suDpro) gene, which was identified in Aspergillus nidulans as a suppressor of proline auxotrophic mutations, encodes the orthologue of Saccharomyces cerevisiae Kae1p, a member of the evolutionarily conserved KEOPS/EKC (Kinase, Endopeptidase and Other Proteins of Small size/Endopeptidase-like and Kinase associated to transcribed Chromatin) complex. In yeast, this complex has been shown to be involved in tRNA modification, transcription, and genome maintenance. In A. nidulans, mutations in kaeA result in several phenotypic effects, the derepression of arginine catabolism genes, and changes in the expression levels of several others, including genes involved in amino acid and siderophore metabolism, sulfate transport, carbon/energy metabolism, translation, and transcription regulation, such as rcoATUP1, which encodes the global transcriptional corepressor
    corecore