18 research outputs found

    Systematic errors as a source of mass discrepancy in black hole microlensing event OGLE-2011-BLG-0462

    Full text link
    Two independent groups reported the discovery of an isolated dark stellar remnant in the microlensing event OGLE-2011-BLG-0462 based on photometric ground-based observations coupled with astrometric measurements taken with the Hubble Space Telescope. These two analyses yielded discrepant mass measurements, with the first group reporting that the lensing object is a black hole of 7.1 +/- 1.3 solar masses whereas the other concluded that the microlensing event was caused by either a neutron star or a low-mass black hole (1.6-4.4 solar masses). Here, we scrutinize the available photometric and astrometric data and conclude that systematic errors are a cause of the discrepant measurements. We find that the lens is an isolated black hole with a mass of 7.88 +/- 0.82 solar masses located at a distance of 1.49 +/- 0.12 kpc. We also study the impact of blending on the accuracy of astrometric microlensing measurements. We find that low-level blending by source companions is a major, previously unrecognized, challenge to astrometric microlensing measurements of black hole masses.Comment: accepted for publication in ApJ

    Microlensing optical depth and event rate in the OGLE-IV Galactic plane fields

    Get PDF
    Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty in conducting high-cadence observations of the Galactic plane over its vast area, which are necessary for the detection of microlensing events, their global properties were hitherto unknown. Here, we present results of the first comprehensive search for microlensing events in the Galactic plane. We searched an area of almost 3000 square degrees along the Galactic plane (|b|<7, 0<l<50, 190<l<360 deg) observed by the Optical Gravitational Lensing Experiment (OGLE) during 2013-2019 and detected 630 events. We demonstrate that the mean Einstein timescales of Galactic plane microlensing events are on average three times longer than those of Galactic bulge events, with little dependence on the Galactic longitude. We also measure the microlensing optical depth and event rate as a function of Galactic longitude and demonstrate that they exponentially decrease with the angular distance from the Galactic Center (with the characteristic angular scale length of 32 deg). The average optical depth decreases from 0.5×1060.5\times 10^{-6} at l=10 deg to 1.5×1081.5\times 10^{-8} in the Galactic anticenter. We also find that the optical depth in the longitude range 240<l<330 deg is asymmetric about the Galactic equator, which we interpret as a signature of the Galactic warp.Comment: ApJS, in pres

    Gaia22dkvLb: A Microlensing Planet Potentially Accessible to Radial-Velocity Characterization

    Full text link
    We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a nearby disk source at ~2.5 kpc rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M_p = 0.50 +/- 0.05 M_J at a projected orbital separation r_perp = 1.63 +/- 0.17 AU. The host is a turnoff star with mass 1.24 +/- 0.06 M_sun and distance of 1.35 +/- 0.09 kpc, and at r'~14, it is far brighter than any previously discovered microlensing planet host, opening up the opportunity of testing the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner-outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius theta_E, but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to definitive characterization of the lens system

    OGLE-2018-BLG-0532Lb: Cold Neptune With Possible Jovian Sibling

    Get PDF
    We report the discovery of the planet OGLE-2018-BLG-0532Lb, with very obvious signatures in the light curve that lead to an estimate of the planet-host mass ratio q=Mplanet/Mhost1×104q=M_{\rm planet}/M_{\rm host}\simeq 1\times10^{-4}. Although there are no obvious systematic residuals to this double-lens/single-source (2L1S) fit, we find that χ2\chi^2 can be significantly improved by adding either a third lens (3L1S, Δχ2=81\Delta\chi^2=81) or second source (2L2S, Δχ2=65\Delta\chi^2=65) to the lens-source geometry. After thorough investigation, we conclude that we cannot decisively distinguish between these two scenarios and therefore focus on the robustly-detected planet. However, given the possible presence of a second planet, we investigate to what degree and with what probability such additional planets may affect seemingly single-planet light curves. Our best estimates for the properties of the lens star and the secure planet are: a host mass M0.25MM\sim 0.25\,M_\odot, system distance DL1D_L\sim 1\,kpc and planet mass mp,1=8Mm_{p,1}= 8\,M_\oplus with projected separation a1,=1.4a_{1,\perp}=1.4\,au. However, there is a relatively bright I=18.6I=18.6 (and also relatively blue) star projected within <50<50\,mas of the lens, and if future high-resolution images show that this is coincident with the lens, then it is possible that it is the lens, in which case, the lens would be both more massive and more distant than the best-estimated values above.Comment: 48 pages, 9 figures, 7 table

    A Gas Giant Planet in the OGLE-2006-BLG-284L Stellar Binary System

    Get PDF
    We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of qp=(1.26±0.19)×103q_p = (1.26\pm 0.19) \times 10^{-3} to the primary. The mass ratio of the two stars is qs=0.289±0.011q_s = 0.289\pm 0.011, and their projected separation is ss=2.1±0.7s_s = 2.1\pm 0.7\,AU, while the projected separation of the planet from the primary is sp=2.2±0.8s_p = 2.2\pm 0.8\,AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of ML1=0.350.20+0.30MM_{L1} = 0.35^{+0.30}_{-0.20}\,M_\odot, ML2=0.100.06+0.09MM_{L2} = 0.10^{+0.09}_{-0.06}\,M_\odot, and mp=14482+126Mm_p = 144^{+126}_{-82}\,M_\oplus, and the KK-band magnitude of the combined brightness of the host stars is KL=19.71.0+0.7K_L = 19.7^{+0.7}_{-1.0}. The separation between the lens and source system will be 90\sim 90\,mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations

    A rotating white dwarf shows different compositions on its opposite faces

    Get PDF
    White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterised by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink toward the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms compete with gravitational settling to change a white dwarf's surface composition as it cools, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor ~2.5 below a temperature of about 30,000 K; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 K are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is likely caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs -- together with GD 323, a white dwarf that shows similar but much more subtle variations. This new class could help shed light on the physical mechanisms behind white dwarf spectral evolution.Comment: 45 pages, 11 figure
    corecore