22 research outputs found

    New insights into retinal circuits through EM connectomics: what we have learnt and what remains to be learned

    Get PDF
    The retinal neural circuit is intricately wired for efficient processing of visual signals. This is well-supported by the specialized connections between retinal neurons at both the functional and ultrastructural levels. Through 3D electron microscopic (EM) reconstructions of retinal neurons and circuits we have learnt much about the specificities of connections within the retinal layers including new insights into how retinal neurons establish connections and perform sophisticated visual computations. This mini-review will summarize the retinal circuitry and provide details about the novel insights EM connectomics has brought into our understanding of the retinal circuitry. We will also discuss unresolved questions about the retinal circuitry that can be addressed by EM connectomics in the future

    Die Funktion der Neuroligine in hemmenden Postsynapsen der Retina

    No full text
    Neuroligine sind postsynaptische Zelladhäsionsproteine mit zentraler Bedeutung für die Ausbildung, Reifung und Funktion von Synapsen. Im Gehirn von Nagetieren werden vier Neuroligin Isoformen exprimiert. Die Neuroligine 1 und 2 findet man auf der postsynaptischen Seite von erregenden (exzitatorischen) und auch hemmenden (inhibitorischen) Synapsen. Hingegen ist die Verteilung und Funktion der beiden anderen Isoformen, Neuroligin 3 und 4, in Synapsen des zentralen Nervensystems noch nicht abschließend geklärt. Dies wäre aber von großem Interesse, da in autistischen Patienten Mutationen in den Neuroliginen 3 und 4 gefunden wurden. Die vorliegende Studie zielte auf eine Charakterisierung der Verteilung und Funktion aller Neuroligine in der Retina. Aufgrund des sehr strukturierten, netzwerkartigen Aufbaus der Retina eignet sich dieses Organ hervorragend für anatomische und funktionelle Analysen. In der Tat ist der Aufbau und die Verschaltung des Zellen der Retina weitgehend charakterisierten worden. Daher konnte der Einfluß der Neuroligine auf die Ausbildung und Aufrechterhaltung des neuronalen Netzwerkes der Retina, sowie auf die Informationsverarbeitung des gesamten Systems studiert werden. Für diese Studien waren isoformspezifische Antikörper und Mauslinien, in denen einzelne Isoformen genetisch deaktiviert worden waren, essentiell. Zunächst wurde die Rolle von Neuroligin 2 untersucht. Diese Isoform wird vorwiegend in inhibitorischen GABAergen Postsynapsen der Retina exprimiert, jedoch nicht in glycinergen oder glutamatergen Synapsen. In Abwesenheit von Neuroligin 2 kommt es daher zu einem drastischen Rückgang der Anzahl der GABAA Rezeptoren in der inneren synaptischen Schicht. Gleichzeitig konnten interessante, wenn auch nur subtile Veränderungen im neuronalen Netzwerk der Retina festgestellt werden. Diese Veränderungen wirken sich nachteilig auf die Verschlüsselung visueller Informationen durch die Ausgangsneuronen der Retina, den Ganglienzellen, aus. Diese Ergebnisse zeigen, dass Neuroligin 2 für die funktionelle Integrität der GABAergen Signalwege ist und damit auch bedeutend für die Integration aller Informationen in der Retina. Anschließend wurde Neuroligin 4 näher untersucht. Immunhistochemische Untersuchungen zeigen, dass Neuroligin 4 nur in einer Subpopulation von glycinergen Postsynapsen vorhanden ist. Interessanterweise führt der Verlust des Neuroligin 4 Genes nicht zu einer meßbaren Änderung im neuronalen Netzwerk der Retina. Jedoch wurde ein Rückgang, wenn auch eines relativ geringen, der Anzahl der Glycin-Rezeptoren, die die alpha 1 Untereinheit aufweisen, gefunden. Diese Untereinheit ist für die schnellen Reaktionszeiten des Rezeptors verantwortlich. Es konnte auch gezeigt werden, dass glycinerge mIPSCs, die in den Ganglienzellen der Retina gemessen wurden, in Abweisenheit von Neuroligin 4 langsamere Deaktivierungskinetiken aufweisen. Demnach führt das Fehlen von Neuroligin 4 zu subtilen Defekten in dem glycinergen, inhibitorischen Netzwerk der inneren synaptischen Schicht der Retina. Abschliessend wurde Neuroligin 3 charakterisiert. Diese Isoform ist ebenfalls an inhibitorischen, insbesondere in GABAergen, Postsynapsen der inneren plexiformen Schicht lokalisiert. In Abwesenheit von Neuroligin 3 kommt es zu einem drastischen Verlust einer kleinen Subpopulation von GABAA Rezeptoren. Es ist zu vermuten, dass daher auch der Verlust von Neuroligin 3 einen deutlichen Einfluß auf die Informationsverarbeitung durch die Ganglienzellen der Retina haben könnte. Insgesamt lieferte diese Studie erste Einblicke in die unterschiedliche Verteilung von drei Isoformen von Neuroligin in der Retina der Maus. Gleichzeitig erlaubten funktionelle Studien tiefere Einblicke in deren Rolle in Synapsen und bei der Verarbeitung visueller Informationen. Die Ergebnisse unterstreichen die Bedeutung dieser Proteinfamilie für die strukturelle und die funktionelle Integrität größerer Subpopulationen von inhibitorischen Synapsen und damit für die Funktionsweise eines neuronalen Netzwerkes

    Role of neuroligins at the inhibitory postsynaptic compartment of the retina

    No full text

    Illuminating the multifaceted roles of neurotransmission in shaping neuronal circuitry

    Get PDF
    Across the nervous system, neurons form highly stereotypic patterns of synaptic connections that are designed to serve specific functions. Mature wiring patterns are often attained upon the refinement of early, less precise connectivity. Much work has led to the prevailing view that many developing circuits are sculpted by activity-dependent competition among converging afferents, which results in the elimination of unwanted synapses and the maintenance and strengthening of desired connections. Studies of the vertebrate retina, however, have recently revealed that activity can play a role in shaping developing circuits without engaging competition among converging inputs that differ in their activity levels. Such neurotransmission-mediated processes can produce stereotypic wiring patterns by promoting selective synapse formation rather than elimination. We discuss how the influence of transmission may also be limited by circuit design and further highlight the importance of transmission beyond development in maintaining wiring specificity and synaptic organization of neural circuits

    Localization of NL3 in the mouse retina.

    No full text
    <p>To ascertain the distribution of NL3 at retinal synapses, co-immunolabelings with excitatory (B) and inhibitory (A, C, D, F) postsynaptic markers were carried out. NL3 essentially did not associate with the excitatory postsynaptic protein PSD-95 (B, E); it colocalized extensively with the ubiquitous GABA<sub>A</sub>γ2 receptor marker (A, E) and equally well with GABA<sub>A</sub>α1, α2 and α3 receptor subsets, suggesting its association with diverse retinal GABA<sub>A</sub> receptor subtypes (C-F). NL3 was also frequently observed together with glycine receptors (GlyR, labeled with a pan-GlyR antibody) (C, E). Plots in E represent true colocalization estimates after subtraction of random associations (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0181011#sec002" target="_blank">Methods</a>). N = 3 animals and at least 4 image sections analyzed per staining. Plots represent mean ± SEM. OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.</p

    Distribution of glycine receptor clusters in WT and NL3-KO retina.

    No full text
    <p>Distinct glycine receptor subsets (containing GlyRα1 or α2 or α3 or α4) were immunolabeled in WT and NL3 KO retinae (A). Glycine receptor population was also labeled with a pan-glycine receptor (pan-GlyR) antibody. No alteration in the density or distribution of Glycine receptors was observed in the NL3 KO compared to control (A, B). N = 4 WT-KO littermate pairs, at least 5 images per sample. OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.</p

    Expression of NL3 in the mouse retina.

    No full text
    <p>NL3, detected with an isoform-specific antibody, is robustly expressed at the inner synaptic layer of the WT retina. Accordingly, only faint background labeling is observed when the same antibody is applied on the retina of the corresponding NL3 KO. OPL, outer plexiform layer; IPL, inner plexiform layer.</p

    MEA recordings of RGC activity in WT and NL3-KO retina.

    No full text
    <p>The responses of RGCs to light stimulation were recorded on MEAs. The proportions of ON and OFF cells were respectively higher and lower in NL3 KO than in WT littermate retinae (<b>A</b>). Overall, NL3 KO RGCs had a lower spontaneous activity rate compared to WT RGCs (<b>B</b>); whereas their receptive field diameter was unchanged (<b>C</b>). Upon white-noise stimulation (<b>D-F</b>), filters from white-noise stimulation (example in <b>D</b> for a WT cell) had significantly larger peak amplitudes (<b>E</b>) and shorter peak latency (<b>F</b>) in NL3 KO retina compared to WT. Data from N = 3 WT- KO littermate pairs; WT = 64 cells (19 ON, 23 OFF and 22 ON-OFF); KO = 73 cells (43 ON, 10 OFF and 20 ON-OFF). Plots represent mean ± SEM. Data in (<b>B-F</b>) are pooled over all three response types.</p

    Loss of Neuroligin3 specifically downregulates retinal GABA<sub>Aα</sub>2 receptors without abolishing direction selectivity

    No full text
    <div><p>The postsynaptic adhesion proteins Neuroligins (NLs) are essential for proper synapse function, and their alterations are associated with a variety of neurodevelopmental disorders. It is increasingly clear that each NL isoform occupies specific subsets of synapses and is able to regulate the function of discrete networks. Studies of NL2 and NL4 in the retina in particular have contributed towards uncovering their role in inhibitory synapse function. In this study we show that NL3 is also predominantly expressed at inhibitory postsynapses in the retinal inner plexiform layer (IPL), where it colocalizes with both GABA<sub>A</sub>- and glycinergic receptor clusters in a 3:2 ratio. In the NL3 deletion-mutant (knockout or KO) mouse, we uncovered a dramatic reduction of the number of GABA<sub>A</sub>α2-subunit containing GABA<sub>A</sub> receptor clusters at the IPL. Retinal activity was thereafter assessed in KO and wild-type (WT) littermates by multi-electrode-array recordings of the output cells of retina, the retinal ganglion cells (RGCs). RGCs in the NL3 KO showed reduced spontaneous activity and an altered response to white noise stimulation. Moreover, upon application of light flashes, the proportion of cells firing at light offset (OFF RGCs) was significantly lower in the NL3 KO compared to WT littermates, whereas the relative number of cells firing at light onset (ON RGCs) increased. Interestingly, although GABA<sub>A</sub>α2-bearing receptors have been related to direction-selective circuits of the retina, features of direction selective-retinal ganglion cells recorded remained unperturbed in the NL3 KO. Together our data underscore the importance of NL3 for the integrity of specific GABA<sub>A</sub>ergic retinal circuits and identifies NL3 as an important regulator of retinal activity.</p></div

    Distribution of GABA<sub>A</sub> receptor clusters in WT and NL3 KO retina.

    No full text
    <p>To assess the integrity of the inhibitory postsynaptic compartment in the absence of NL3, WT and NL3 KO retinae were labeled for GABA<sub>A</sub>α1, α2, α3, and γ2 receptor subsets (A). A selective but dramatic reduction in the number of GABA<sub>A</sub>α2 receptor clusters was observed in the NL3 KO retina compared to WT (A, B). Of note, the number of the other GABA receptor subsets, Gephyrin and PSD-95 is comparable in WT and NL3 KO retinae. N = 4 WT-KO littermate pairs, at least 5 images per sample. OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer.</p
    corecore