158 research outputs found

    Supernovae from rotating stars

    Full text link
    The present paper discusses the main physical effects produced by stellar rotation on presupernovae, as well as observations which confirm these effects and their consequences for presupernova models. Rotation critically influences the mass of the exploding cores, the mass and chemical composition of the envelopes and the types of supernovae, as well as the properties of the remnants and the chemical yields. In the formation of gamma-ray bursts, rotation and the properties of rotating stars appear as the key factor. In binaries, the interaction between axial rotation and tidal effects often leads to interesting and unexpected results. Rotation plays a key role in shaping the evolution and nucleosynthesis in massive stars with very low metallicities (metallicity below about the Small Magellanic Cloud metallicity down to Population III stars). At solar and higher metallicities, the effects of rotation compete with those of stellar winds. In close binaries, the synchronisation process can lock the star at a high rotation rate despite strong mass loss and thus both effects, rotation and stellar winds, have a strong impact. In conclusion, rotation is a key physical ingredient of the stellar models and of presupernova stages, and the evolution both of single stars and close binaries. Moreover, important effects are expected along the whole cosmic history.Comment: 36 pages, 15 figures, published in Handbook of Supernovae, A.W. Alsabti and P. Murdin (eds), Springe

    Comparison of four mathematical models to analyze indicator-dilution curves in the coronary circulation

    Get PDF
    While several models have proven to result in accurate estimations when measuring cardiac output using indicator dilution, the mono-exponential model has primarily been chosen for deriving coronary blood/plasma volume. In this study, we compared four models to derive coronary plasma volume using indicator dilution; the mono-exponential, power-law, gamma-variate, and local density random walk (LDRW) model. In anesthetized goats (N = 14), we determined the distribution volume of high molecular weight (2,000 kDa) dextrans. A bolus injection (1.0 ml, 0.65 mg/ml) was given intracoronary and coronary venous blood samples were taken every 0.5–1.0 s; outflow curves were analyzed using the four aforementioned models. Measurements were done at baseline and during adenosine infusion. Absolute coronary plasma volume estimates varied by ~25% between models, while the relative volume increase during adenosine infusion was similar for all models. The gamma-variate, LDRW, and mono-exponential model resulted in volumes corresponding with literature, whereas the power-model seemed to overestimate the coronary plasma volume. The gamma-variate and LDRW model appear to be suitable alternative models to the mono-exponential model to analyze coronary indicator-dilution curves, particularly since these models are minimally influenced by outliers and do not depend on data of the descending slope of the curve only

    Cosmic rays and molecular clouds

    Full text link
    This paper deals with the cosmic-ray penetration into molecular clouds and with the related gamma--ray emission. High energy cosmic rays interact with the dense gas and produce neutral pions which in turn decay into two gamma rays. This makes molecular clouds potential sources of gamma rays, especially if they are located in the vicinity of a powerful accelerator that injects cosmic rays in the interstellar medium. The amplitude and duration in time of the cosmic--ray overdensity around a given source depend on how quickly cosmic rays diffuse in the turbulent galactic magnetic field. For these reasons, gamma-ray observations of molecular clouds can be used both to locate the sources of cosmic rays and to constrain the properties of cosmic-ray diffusion in the Galaxy.Comment: To appear in the proceedings of the San Cugat Forum on Astrophysics 2012, 27 pages, 10 figure

    Advances in heterometallic ring-opening (co)polymerisation catalysis

    Get PDF
    Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design

    A Functional and Structural Investigation of the Human Fronto-Basal Volitional Saccade Network

    Get PDF
    Almost all cortical areas are connected to the subcortical basal ganglia (BG) through parallel recurrent inhibitory and excitatory loops, exerting volitional control over automatic behavior. As this model is largely based on non-human primate research, we used high resolution functional MRI and diffusion tensor imaging (DTI) to investigate the functional and structural organization of the human (pre)frontal cortico-basal network controlling eye movements. Participants performed saccades in darkness, pro- and antisaccades and observed stimuli during fixation. We observed several bilateral functional subdivisions along the precentral sulcus around the human frontal eye fields (FEF): a medial and lateral zone activating for saccades in darkness, a more fronto-medial zone preferentially active for ipsilateral antisaccades, and a large anterior strip along the precentral sulcus activating for visual stimulus presentation during fixation. The supplementary eye fields (SEF) were identified along the medial wall containing all aforementioned functions. In the striatum, the BG area receiving almost all cortical input, all saccade related activation was observed in the putamen, previously considered a skeletomotor striatal subdivision. Activation elicited by the cue instructing pro or antisaccade trials was clearest in the medial FEF and right putamen. DTI fiber tracking revealed that the subdivisions of the human FEF complex are mainly connected to the putamen, in agreement with the fMRI findings. The present findings demonstrate that the human FEF has functional subdivisions somewhat comparable to non-human primates. However, the connections to and activation in the human striatum preferentially involve the putamen, not the caudate nucleus as is reported for monkeys. This could imply that fronto-striatal projections for the oculomotor system are fundamentally different between humans and monkeys. Alternatively, there could be a bias in published reports of monkey studies favoring the caudate nucleus over the putamen in the search for oculomotor functions

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

    Get PDF
    Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives

    Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors

    Get PDF
    The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up

    Genome-Wide and Candidate Gene Association Study of Cigarette Smoking Behaviors

    Get PDF
    The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up

    Associations of Variants in CHRNA5/A3/B4 Gene Cluster with Smoking Behaviors in a Korean Population

    Get PDF
    Multiple genome-wide and targeted association studies reveal a significant association of variants in the CHRNA5-CHRNA3-CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 with nicotine dependence. The subjects examined in most of these studies had a European origin. However, considering the distinct linkage disequilibrium patterns in European and other ethnic populations, it would be of tremendous interest to determine whether such associations could be replicated in populations of other ethnicities, such as Asians. In this study, we performed comprehensive association and interaction analyses for 32 single-nucleotide polymorphisms (SNPs) in CHRNA5/A3/B4 with smoking initiation (SI), smoking quantity (SQ), and smoking cessation (SC) in a Korean sample (N = 8,842). We found nominally significant associations of 7 SNPs with at least one smoking-related phenotype in the total sample (SI: P = 0.015∼0.023; SQ: P = 0.008∼0.028; SC: P = 0.018∼0.047) and the male sample (SI: P = 0.001∼0.023; SQ: P = 0.001∼0.046; SC: P = 0.01). A spectrum of haplotypes formed by three consecutive SNPs located between rs16969948 in CHRNA5 and rs6495316 in the intergenic region downstream from the 5′ end of CHRNB4 was associated with these three smoking-related phenotypes in both the total and the male sample. Notably, associations of these variants and haplotypes with SC appear to be much weaker than those with SI and SQ. In addition, we performed an interaction analysis of SNPs within the cluster using the generalized multifactor dimensionality reduction method and found a significant interaction of SNPs rs7163730 in LOC123688, rs6495308 in CHRNA3, and rs7166158, rs8043123, and rs11072793 in the intergenic region downstream from the 5′ end of CHRNB4 to be influencing SI in the male sample. Considering that fewer than 5% of the female participants were smokers, we did not perform any analysis on female subjects specifically. Together, our detected associations of variants in the CHRNA5/A3/B4 cluster with SI, SQ, and SC in the Korean smoker samples provide strong evidence for the contribution of this cluster to the etiology of SI, ND, and SC in this Asian population
    corecore