43 research outputs found

    QCD effective actions from the solutions of the transport equations

    Get PDF
    We solve the collisionless transport equations of a quark-gluon plasma interacting through mean chromodynamic fields. The system is assumed to be translation invariant in one or more space-time directions. We present exact solutions that hold if the vector gauge fields in the direction of the translation invariance commute with their covariant derivatives. We also solve the equations perturbatively when the commutation condition is relaxed. Further, we derive the color current and the associated effective action. For the static quasi-equilibrium system, our results reproduce the full one-loop effective action of QCD in the presence of constant background fields, where the above mentioned commutation condition is satisfied

    What Do Electromagnetic Plasmas Tell Us about Quark-Gluon Plasma?

    Get PDF
    Since the quark-gluon plasma (QGP) reveals some obvious similarities to the well-known electromagnetic plasma (EMP), an accumulated knowledge on EMP can be used in the QGP studies. After discussing similarities and differences of the two systems, we present theoretical tools which are used to describe the plasmas. The tools include: kinetic theory, hydrodynamic approach and diagrammatic perturbative methods. We consider collective phenomena in the plasma with a particular emphasis on instabilities which crucially influence temporal evolution of the system. Finally, properties of strongly coupled plasma are discussed

    Photon-Photon Interaction in a Photon Gas

    Get PDF
    Using the effective Lagrangian for the low energy photon-photon interaction the lowest order photon self energy at finite temperature and in non-equilibrium is calculated within the real time formalism. The Debye mass, the dispersion relation, the dielectric tensor, and the velocity of light following from the photon self energy are discussed. As an application we consider the interaction of photons with the cosmic microwave background radiation.Comment: REVTEX, 7 pages, 1 PostSrcipt figur

    Nonequilibrium perturbation theory for spin-1/2 fields

    Get PDF
    A partial resummation of perturbation theory is described for field theories containing spin-1/2 particles in states that may be far from thermal equilibrium. This allows the nonequilibrium state to be characterized in terms of quasiparticles that approximate its true elementary excitations. In particular, the quasiparticles have dispersion relations that differ from those of free particles, finite thermal widths and occupation numbers which, in contrast to those of standard perturbation theory evolve with the changing nonequilibrium environment. A description of this kind is essential for estimating the evolution of the system over extended periods of time. In contrast to the corresponding description of scalar particles, the structure of nonequilibrium fermion propagators exhibits features which have no counterpart in the equilibrium theory.Comment: 16 pages; no figures; submitted to Phys. Rev.

    Collisional Energy Loss of Fast Charged Particles in Relativistic Plasmas

    Get PDF
    Following an argument by Kirzhnits we rederive an exact expression for the energy loss of a fast charged particle in a relativistic plasma using the quantum field theoretical language. We compare this result to perturbative calculations of the collisional energy loss of an energetic electron or muon in an electron-positron plasma and of an energetic parton in the quark-gluon plasma.Comment: 9 pages, LATEX, 2 PostScript figure

    The effects of nonextensive statistics on fluctuations investigated in event-by-event analysis of data

    Full text link
    We investigate the effect of nonextensive statistics as applied to the chemical fluctuations in high-energy nuclear collisions discussed recently using the event-by-event analysis of data. It turns out that very minuite nonextensitivity changes drastically the expected experimental output for the fluctuation measure. This results is in agreement with similar studies of nonextensity performed recently for the transverse momentum fluctuations in the same reactions.Comment: Revised version, to be published in J. Phys. G (2000

    Effective theory for the soft fluctuation modes in the spontaneously broken phase of the N-component scalar field theory

    Get PDF
    The effective dynamics of the low-frequency modes is derived for the O(N) symmetric scalar field theory in the broken symmetry phase. The effect of the high-frequency fluctuations is taken into account at one-loop level exactly. A new length scale is shown to govern the long-time asymptotics of the linear response function of the Goldstone modes. The large time asymptotic decay of an arbitrary fluctuation is determined in the linear regime. We propose a set of local equations for the numerical solution of the effective non-linear dynamics. The applicability of the usual gradient expansion is carefully assessed.Comment: 21 pages, LaTeX; final version to appear in Phys. Rev.
    corecore