85 research outputs found
An In-Silico Comparative Study of Lipases from the Antarctic Psychrophilic Ciliate Euplotes focardii and the Mesophilic Congeneric Species Euplotes crassus: Insight into Molecular Cold-Adaptation
Cold-adapted enzymes produced by psychrophilic organisms have elevated catalytic activities at low temperatures compared to their mesophilic counterparts. This is largely due to amino acids changes in the protein sequence that often confer increased molecular flexibility in the cold. Comparison of structural changes between psychrophilic and mesophilic enzymes often reveal molecular cold adaptation. In the present study, we performed an in-silico comparative analysis of 104 hydrolytic enzymes belonging to the family of lipases from two evolutionary close marine ciliate species: The Antarctic psychrophilic Euplotes focardii and the mesophilic Euplotes crassus. By applying bioinformatics approaches, we compared amino acid composition and predicted secondary and tertiary structures of these lipases to extract relevant information relative to cold adaptation. Our results not only confirm the importance of several previous recognized amino acid substitutions for cold adaptation, as the preference for small amino acid, but also identify some new factors correlated with the secondary structure possibly responsible for enhanced enzyme activity at low temperatures. This study emphasizes the subtle sequence and structural modifications that may help to transform mesophilic into psychrophilic enzymes for industrial applications by protein engineering
Homology Modeling and Docking Analysis of the Interaction between Polyphenols and Mammalian 20S Proteasomes.
Molecular docking of small ligands to biologically active macromolecules has become a valuable strategy to predict the stability of complexes between potential partners and their binding modes. In this perspective, we applied this computational procedure to rationalize the reported role of polyphenols as inhibitors of the mammalian 20S proteasomes. In particular, polyphenols were shown to modulate each proteasomal activity at different extents both in the constitutive and the inducible enzyme. We performed a flexible molecular docking analysis between a set of polyphenols previously demonstrated to have the highest binding affinity and both the constitutive (from deposited PDB structures) and homology modeled active subunits of the IFN-gamma inducible proteasome, to provide insight into the possible mechanism of interaction. Among the tested polyphenols, (-)-epigallocatechin-3-gallate showed the highest affinity for the proteasome subunits, both in terms of intermolecular energy and predicted equilibrium constants, in particular for beta 5 and beta 5i subunits (E(Total)=-66 kcal/mol, K(i)=81.3 mu M and E(Total)=-83.9 kcal/mol, K(i)=0.29 mu M, respectively), known to be related to the chymotrypsin-like and BrAAP activities. Collectively, polyphenols showed a higher affinity for the inducible subunits, in agreement with previous in vitro studies. Additionally, different contributions to the interaction energy (van der Waals, electrostatic, H-bond) of proteasome-polyphenols complexes were dissected
Rational engineering of a cold-adapted α-amylase from the Antarctic ciliate Euplotes focardii for simultaneous improvement of thermostability and catalytic activity
The α-amylases are endo-acting enzyme which hydrolyze starch by randomly cleaving the 1,4-α-D-glucosidic linkages between the adjacent glucose units in linear amylose chain. It has significant advantages in a wide range of applications, in particular in food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, differently from most of the α-amylases characterized so far. Furthermore, EfAmy shows the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active EfAmy with improved thermostability and catalytic efficiency at low temperatures. We engineered two EfAmy mutants: in one mutant we introduced Pro residues on the A and B domains in surface loops. In the second mutant we changed Val into Thr residues close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of EfAmy revealed that the combination of mutations at the surface loops increased thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for changes in the biochemical properties are discussed by analyzing the three-dimensional structural model.IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the psychrophilic Antarctic ciliate Euplotes focardii (named EfAmy) is a cold-adapted enzyme with optimal catalytic activity in alkaline environment. These unique features distinguish it from most α-amylases characterized so far. In this work, we engineered the novel EfAmy with improved thermostability, substrate binding affinity and catalytic efficiency to various extents, without impact on its pH preference. These characteristics can be considered an important property to be used in food, detergents, textiles and other industrial applications. The enzyme engineering strategy developed in this study may also provide useful knowledge for future optimization of molecules to be used in particular industrial applications
Innovative Spent Coffee Ground-Based Biofertilizer: Effects on Soil Microbiome and Crop Health
Aim:
Crop health is strictly related to soil biodiversity. The transition from chemical fertilizers to biofertilizers may represent a sustainable way to restore soil biodiversity, improve crop health and productivity.
Spent coffee ground (SCG) is a waste material with a high potential for the development of innovative biofertilizers. However, previous research showed that the use of SCG as fertilizer inhibits plants growth, mainly due to the presence of phytotoxic compounds. On the contrary, SCG-treated plants showed high nutritional values with an increased content in antioxidants and mineral elements.
The aim of this research was to test the effects of an innovative SCG-based biofertilizer (BF) on salad crops (Lactuca sativa), and on their rhizosphere microbial communities. And thus, to evaluate its potential in mitigating SCG’s negative effects.
Method:
A randomized block design experiment was carried to compare the effects of BF and SCG at 3 different concentrations, each with 5 replicates. Plants functional traits and nutritional values were evaluated. 16S rRNA gene metabarcoding was used to assess the effects on rhizosphere communities.
Results:
BF-treated plants showed a higher polyphenols level and less stress signs compared to the SCG-treated and control ones. At the highest concentrations, BF modify bacterial communities with an increase of plant growth-promoting rhizobacteria (e.g., Azospirillium, Arachidicoccus) and other beneficial bacterial taxa, such as those involved in disease suppression, aromatic compounds degradation, nutrients cycling.
Conclusions:
BF resulted capable of reducing SCG negative effects on plant health, promoting the growth of plants beneficial microbial taxa and, therefore, favouring a healthier growth of crops
Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Expression Pathways in Sea Bream Hepatocytes
Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency
of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish
Ghrelin induces apoptosis in colon adenocarcinoma cells via proteasome inhibition and autophagy induction.
Ghrelin is a metabolism-regulating hormone recently investigated for its role in cancer survival and progression. Controversially, ghrelin may act as either anti-apoptotic or pro-apoptotic factor in different cancer cells, suggesting that the effects are cell type dependent. Limited data are currently available on the effects exerted by ghrelin on intracellular proteolytic pathways in cancer. Both the lysosomal and the proteasomal systems are fundamental in cellular proliferation and apoptosis regulation. With the aim of exploring if the proteasome and autophagy may be possible targets of ghrelin in cancer, we exposed human colorectal adenocarcinoma cells to ghrelin. Preliminary in vitro fluorimetric assays evidenced for the first time a direct inhibition of 20S proteasomes by ghrelin, particularly evident for the trypsin-like activity. Moreover, 1 μM ghrelin induced apoptosis in colorectal adenocarcinoma cells by inhibiting the ubiquitin-proteasome system and by activating autophagy, with p53 having an "interactive" role
Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells
Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis
Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells
Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells
Association between Food or Nutrients and Gut Microbiota in Healthy and Helminth-Infected Women of Reproductive Age from Zanzibar, Tanzania
Modulating the gut microbiota is recognised as one strategy for preventing and fighting diseases. While the significant impact of diet on the gut microbiota’s composition and function has been extensively researched, there is a notable lack of studies on the interactions between diet, microbiota, and helminth infections. Here, we used a combination of self-reported food intake and a 16S rDNA sequencing approach to analyse the composition of the gut microbiota in women of reproductive age from the two main islands of the Zanzibar archipelago, where helminth infections are endemic. We also applied a Spearman correlation analysis to food/nutrients and gut microbiota. Our results reveal that, despite close ethnic and cultural ties, the participants’ gut microbiota differs depending on their location. A nutrient intake analysis revealed deficiencies in minerals and vitamins, indicating an imbalanced diet. A correlation analysis identified bacterial taxa consistently correlated with specific food or nutrients in healthy women from both locations, and in two types of helminth infections. Escherichia/Shigella abundances, usually associated with Trichuris trichiura infection, consistently correlated with insufficient levels of vitamins B2 and B12. In conclusion, our findings suggest that the increased consumption of specific food like cassava and fish, as well as essential nutrients such as calcium, B vitamins, and vitamin A, may modulate the gut microbiota of populations residing in regions where helminth infections are endemic
Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies
Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor
- …