59 research outputs found

    Biopolymers from lactic acid bacteria. Novel applications in foods and beverages

    Get PDF
    Lactic acid bacteria (LAB) are microorganisms widely used in the fermented food industry worldwide. Certain LAB are able to produce exopolysaccharides (EPS) either attached to the cell wall (capsular EPS) or released to the extracellular environment (EPS). According to their composition, LAB may synthesize heteropolysaccharides or homopolysaccharides. A wide diversity of EPS are produced by LAB concerning their monomer composition, molecular mass, and structure. Although EPS-producing LAB strains have been traditionally applied in the manufacture of dairy products such as fermented milks and yogurts, their use in the elaboration of low-fat cheeses, diverse type of sourdough breads, and certain beverages are some of the novel applications of these polymers. This work aims to collect the most relevant issues of the former reviews concerning the monomer composition, structure, and yields and biosynthetic enzymes of EPS from LAB; to describe the recently characterized EPS and to present the application of both EPS-producing strains and their polymers in the fermented (specifically beverages and cereal-based) food industry.Fil: Torino, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Font, Graciela Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Diversity and functional properties of lactic acid bacteria isolated from wild fruits and flowers present in northern Argentina

    Get PDF
    Lactic acid bacteria (LAB) are capable of converting carbohydrate substrates into organic acids (mainly lactic acid) and producing a wide range of metabolites. Due to their interesting beneficial properties, LAB are widely used as starter cultures, as probiotics, and as microbial cell factories. Exploring LAB present in unknown niches may lead to the isolation of unique species or strains with relevant technological properties. Autochthonous rather than allochthonous starter cultures are preferred in the current industry of fermented food products, due to better adaptation and performance of autochthonous strains to the matrix they originate from. In this work, the lactic microbiota of eight different wild tropical types of fruits and four types of flowers were studied. The ability of the isolated strains to produce metabolites of interest to the food industry was evaluated. The presence of 21 species belonging to the genera Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc, and Weissella was evidenced by using culture-dependent techniques. The isolated LAB corresponded to 95 genotypically differentiated strains by applying rep-PCR and sequencing of the 16S rRNA gene; subsequently, representative strains of the different isolated species were studied for technological properties, such as fast growth rate and acidifying capacity; pectinolytic and cinnamoyl esterase activities, and absence of biogenic amine biosynthesis. Additionally, the strains' capacity to produce ethyl esters as well as mannitol was evaluated. The isolated fruit- and flower-origin LAB displayed functional properties that validate their potential use in the manufacture of fermented fruit-based products setting the background for the design of novel functional foods.Fil: Ruiz Rodríguez, Luciana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Mohamed, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Bleckwedel, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Medina, Roxana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: De Vuyst, Luc. Vrije Unviversiteit Brussel; BélgicaFil: Hebert, Elvira Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Global analysis of mannitol 2-dehydrogenase in lactobacillus reuteri crl 1101 during mannitol production through enzymatic, genetic and proteomic approaches

    Get PDF
    Several plants, fungi, algae, and certain bacteria produce mannitol, a polyol derived from fructose. Mannitol has multiple industrial applications in the food, pharmaceutical, and medical industries, being mainly used as a non-metabolizable sweetener in foods. Many heterofermentative lactic acid bacteria synthesize mannitol when an alternative electron acceptor such as fructose is present in the medium. In previous work, we reported the ability of Lactobacillus reuteri CRL 1101 to efficiently produce mannitol from sugarcane molasses as carbon source at constant pH of 5.0; the activity of the enzyme mannitol 2-dehydrogenase (MDH) responsible for the fructose conversion into mannitol being highest during the log cell growth phase. Here, a detailed assessment of the MDH activity and relative expression of the mdh gene during the growth of L. reuteri CRL 1101 in the presence of fructose is presented. It was observed that MDH was markedly induced by the presence of fructose. A direct correlation between the maximum MDH enzyme activity and a high level of mdh transcript expression during the log-phase of cells grown in a fructose-containing chemically defined medium was detected. Furthermore, two proteomic approaches (2DE and shotgun proteomics) applied in this study confirmed the inducible expression of MDH in L. reuteri. A global study of the effect of fructose on activity, mdh gene, and protein expressions of MDH in L. reuteri is thus for the first time presented. This work represents a deep insight into the polyol formation by a Lactobacillus strain with biotechnological potential in the nutraceutics and pharmaceutical areas.Fil: Ortiz, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Bleckwedel, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Fadda, Silvina G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Picariello, Gianluca. Istituto Di Scienze Dell'alimentazione; ItaliaFil: Hebert, Elvira Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Raya, Raul Ricardo. University of Toronto; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids

    Get PDF
    Selenium (Se) is an essential micronutrient for the majority of living organisms, and it has been identified as selenocysteine in the active site of several selenoproteins such as glutathione peroxidase, thioredoxin reductase, and deiodinases. Se deficiency in humans is associated with viral infections, thyroid dysfunction, different types of cancer, and aging. In several European countries as well as in Argentina, Se intake is below the recommended dietary Intake (RDI). Some lactic acid bacteria (LAB) can accumulate and bio-transform selenite (toxic) into Se-nanoparticles (SeNPs) and Se-amino acids (non-toxic). The microbial growth, Se metabolite distribution, and the glutathione reductase (involved in selenite reduction) activity of Se-enriched LAB were studied in this work. The ninety-six assayed strains, belonging to the genera Lactococcus, Weissella, Leuconostoc, Lactobacillus, Enterococcus, and Fructobacillus could grow in the presence of 5 ppm sodium selenite. From the total, eight strains could remove more than 80% of the added Se from the culture medium. These bacteria accumulated intracellularly between 1.2 and 2.5 ppm of the added Se, from which F. tropaeoli CRL 2034 contained the highest intracellular amount. These strains produced only the seleno-amino acid SeCys as observed by LC-ICP-MS and confirmed by LC-ESI-MS/MS. The intracellular SeCys concentrations were between 0.015 and 0.880 ppm; Lb. brevis CRL 2051 (0.873 ppm), Lb. plantarum CRL 2030 (0.867 ppm), and F. tropaeoli CRL 2034 (0.625 ppm) were the strains that showed the highest concentrations. Glutathione reductase activity values were higher when the strains were grown in the presence of Se except for the F. tropaeoli CRL 2034 strain, which showed an opposite behavior. The cellular morphology of the strains was not affected by the presence of Se in the culture medium; interestingly, all the strains were able to form spherical SeNPs as determined by transmission electron microscopy (TEM). Only two Enterococcus strains produced the volatile Se compounds dimethyl-diselenide identified by GC-MS. Our results show that Lb. brevis CRL 2051, Lb. plantarum CRL 2030, and F. tropaeoli CRL 2034 could be used for the development of nutraceuticals or as starter cultures for the bio-enrichment of fermented fruit beverages with SeCys and SeNPs.Fil: Martínez, Fernando Gabriel. Universidad Complutense de Madrid. Facultad de Ciencias Químicas. Departamento de Química Analítica; . Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Moreno Martin, Gustavo. Universidad Complutense de Madrid. Facultad de Ciencias Químicas. Departamento de Química Analítica;Fil: Pescuma, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Madrid Albarrán, Yolanda. Universidad Complutense de Madrid. Facultad de Ciencias Químicas. Departamento de Química Analítica;Fil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Draft Genome Sequence of the Mannitol-Producing Strain Lactobacillus mucosae CRL573

    Get PDF
    Lactobacillus mucosae CRL573, isolated from child fecal samples, efficiently converts fructose and/or sucrose into the lowcalorie sugar mannitol when cultured in modified MRS medium at pH 5.0. Also, the strain is capable of producing bacteriocin. The draft genome sequence of this strain with potential industrial applications is presented here.Fil: Bleckwedel, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Teran, Lucrecia Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Bonacina, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Saavedra, Maria Lucila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Raya, Raul Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Food prospects of selenium enriched-Lactobacillus acidophilus CRL 636 and Lactobacillus reuteri CRL 1101

    Get PDF
    Selenium, which is present as SeCys in selenoproteins, is involved in cancer prevention, thyroid functioning, and pathogen inhibition. Lactobacilli can biotransform inorganic Se into seleno-amino acids. Growth, Se accumulation and seleno-amino acid formation by Lactobacillus acidophilus CRL636 and L. reuteri CRL1101 in a Se-supplemented medium were studied. Moreover, survival of Se-enriched strains to different pH values and bile salts was analyzed. L. acidophilus CRL636 showed low growth rate in the presence of Se while differences were less evident for L. reuteri CRL1101, which displayed higher amounts of intracellular SeCys and SeMet than the CRL636 strain. Interestingly, both lactobacilli could produce Se-nanoparticles. Se-enriched lactobacilli showed lower growth rates than non-Se exposed cells. The adverse effect of bile salts and the ability to survive at pH 4.0 diminished for the Se-enriched L. reuteri strain. The studied lactobacilli could be used as Se-enriched probiotics or as a vehicle for manufacturing Se-containing fermented foods.Fil: Pescuma, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentina. Universidad Complutense de Madrid; EspañaFil: Gomez Gomez, Beatríz. Universidad Complutense de Madrid; EspañaFil: Perez Corona, Teresa. Universidad Complutense de Madrid; EspañaFil: Font, Graciela Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Madrid Albarrn, Yolanda. Universidad Complutense de Madrid; EspañaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin

    Functional fermented beberages enriched in seleno-amino acids and seleno-nanoparticles

    Get PDF
    Selenium (Se) is an essential micronutrient for human health, which is found as selenocysteine (SeCys) in the active site of Se-dependent enzymes involved in the response to oxidative stress and in thyroid functions. The main inorganic Se forms, selenite and selenate are toxic. Some lactic acid bacteria (LAB) can reduce Se salts into seleno-nanoparticles (SeNPs) and seleno-amino acids, which are non-toxic and highly bioavailable forms. In several European countries, as well as in Argentina, Se intake is below the recommended dietary intake (RDI). Se-enrichment of foods is an attractive strategy to increase its ingestion. We aimed to formulate a fermented fruit juice-milk beverage (FJMB) bio-enriched in Se. The fruit-origin strains Fructobacillus tropaeoli CRL 2034 and Levilactobacillus brevis CRL 2051 were grown with or without 5 mg/L of Se prior to co-inoculation (1% of each strain) in the FJMB and were incubated 14 h at 30 °C. The survival of the strains under storage conditions (6 °C, 52 days), and after digestion [using an in vitro gastrointestinal system (GIS)] was analyzed. The strains grew (up to 8.6 U log each) and acidified FJMB reaching a final pH of 4.6. Sugar metabolism and organic acid production were similar for control and selenized cells (RP-HPLC); while mannitol production by selenized cells of the Fructobacillus was lower (0.18 ± 0.03) than control cells. The studied strains could not degrade the proteins present in the FJMB (SDS-PAGE). Selenized cells increased the beverage total Se concentration (ICP-MS, 84.9 ± 4.5 μg/L) and biotransformed selenite into SeCys (39.1 ± 0.4 μg/L) and SeMet (6.1 ± 0.1 μg/L) as detected by LC-ICP-MS. Moreover, SEM images of the fermented FJMB revealed the presence of SeNPs attached to the cell surface of both strains. Interestingly, microbial resistance at the end of the shelf life was greater (between 0.5 and 0.7 U log) for selenized than non-selenized cells. However, no differences were observed in the sugar and organic acid concentrations between treated and non-treated cells and a lower (0.29 ± 0.04 g/L) mannitol production was detected at 28 day incubation by the treated strains. After GIS digestion, a decrease in the cell counts of F. tropaeoli and L. brevis (1.60 and 0.80 U log, respectively) was observed. Interestingly, 64.3 ± 3.3 μg total Se/L partly as SeCys (25.8 ± 2.3 μg/L) and SeMet (2.4 ± 0.2 μg/L) were found in the FJMB supernatant after intestinal digestion, highlighting the bioaccessibility of these compounds. Remarkably, 250 mL of the FJMB could cover 64% of the Se RDI (25 μg/day), from which 28% is composed by seleno-amino acids. Our results suggest that selenized cells of F. tropaeoli CRL 2034 and L. brevis CRL 2051 could be used for formulating functional Se-enriched beverages to improve this micronutrient intake in humans.Fil: Martínez, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Complutense de Madrid. Facultad de Ciencias Químicas; EspañaFil: Moreno Martin, Gustavo. Universidad Complutense de Madrid. Facultad de Ciencias Químicas; EspañaFil: Madrid Albarrán, Yolanda. Universidad Complutense de Madrid. Facultad de Ciencias Químicas; EspañaFil: Ordoñez, Omar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Pescuma, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Centro de Investigación y Extensión Forestal Andino Patagónico; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaLVI Annual Meeting of the Argentine Society for Biochemistry and Molecular Biology Research; XV Annual Meeting of the Argentinean Society for General MicrobiologyVirtualArgentinaSociedad Argentina de Investigación en Bioquímica y Biología MolecularSociedad Argentina de Microbiología Genera

    Fermentación de jugos y bebidas a base de frutas

    Get PDF
    Las frutas constituyen una fuente de carbohidratos, ácidos, minerales, polifenoles, vitaminas hidrosolubles (vitamina C y del grupo B), provitamina A, aminoácidos, compuestos aromáticos, carotenoides, fibras, fitoesteroles y otras sustancias bioactivas en la dieta humana. Estos compuestos pueden prevenir patologías crónicas, cáncer, mortalidad prematura, enfermedades coronarias y disminuir el riesgo de accidente cerebrovascular. Las frutas se consumen frescas o mínimamente procesadas y tienen una vida útil corta ya que son susceptibles al deterioro microbiano. La fermentación láctica es una tecnología simple, sostenible y de bajo costo para mantener y/o mejorar las propiedades nutricionales y sensoriales de las materias primas y extender la vida útil de las frutas bajo condiciones de seguridad sanitaria. La fermentación por bacterias lácticas (BAL) puede contribuir al aroma y sabor de los jugos, así como incrementar la biodisponibilidad de los compuestos fenólicos presentes en la fruta potenciando su actividad antioxidante. Además, los jugos pueden ser fermentados por bacterias probióticas que contribuyan con la seguridad por medio de la producción de metabolitos antagónicos (bacteriocinas, peróxido, etc.) o tengan un efecto inmunomodulador sobre el huésped. De esta manera, los jugos de fruta podrían ser una fuente de probióticos para veganos o personas intolerantes a la lactosa. El jugo fermentado de fruta más ampliamente consumido es el vino; esta bebida alcohólica es el resultado de interacciones complejas entre levaduras, bacterias y las condiciones físico-químicas del mosto de la uva. Al consumo moderado de vino tinto se le han atribuido diversos efectos benéficos para la salud, siendo el resveratrol el compuesto fenólico más estudiado y popularmente conocido. Las BAL intervienen en la fermentación maloláctica durante el proceso de vinificación disminuyendo la acidez de los vinos, fermentación que también permite mejorar las características aromáticas del producto a través del metabolismo de ácidos orgánicos, carbohidratos, polisacáridos, aminoácidos y la producción de enzimas como glicosidasas, esterasas y proteasas, que generan compuestos volátiles que modifican el flavor del producto final. El desarrollo de bebidas frutales fermentadas no-alcóholicas en nuestro país constituye un área de vacancia científico-tecnológica. La posibilidad de producir un sinergismo entre el metabolismo de las BAL y los compuestos bioactivos de las frutas, dirigido a la producción de bebidas con metabolitos bioactivos de mayor biodisponibilidad y/o funcionalidad representa un desafío para el desarrollo de nuevos alimentos fermentados funcionales que incluya a consumidores con hábitos veganos o personas que poseen alergias alimenticias provocadas por alimentos lácteos o intolerancia a la lactosa.Fil: Ruiz Rodríguez, Luciana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Mendoza, Lucia Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Van Nieuwenhove, Carina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Pescuma, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin

    Whey-derived valuable products obtained by microbial fermentation

    Get PDF
    Whey, the main by-product of the cheese industry, is considered as an important pollutant due to its high chemical and biological oxygen demand. Whey, often considered as waste, has high nutritional value and can be used to obtain value-added products, although some of them need expensive enzymatic synthesis. An economical alternative to transform whey into valuable products is through bacterial or yeast fermentations and by accumulation during algae growth. Fermentative processes can be applied either to produce individual compounds or to formulate new foods and beverages. In the first case, a considerable amount of research has been directed to obtain biofuels able to replace those derived from petrol. In addition, the possibility of replacing petrol-derived plastics by biodegradable polymers synthesized during bacterial fermentation of whey has been sought. Further, the ability of different organisms to produce metabolites commonly used in the food and pharmaceutical industries (i.e., lactic acid, lactobionic acid, polysaccharides, etc.) using whey as growth substrate has been studied. On the other hand, new low-cost functional whey-based foods and beverages leveraging the high nutritional quality of whey have been formulated, highlighting the health-promoting effects of fermented whey-derived products. This review aims to gather the multiple uses of whey as sustainable raw material for the production of individual compounds, foods, and beverages by microbial fermentation. This is the first work to give an overview on themicrobial transformation of whey as raw material into a large repertoire of industrially relevant foods and products.Fil: Pescuma, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia Para Lactobacilos (i); ArgentinaFil: Font, Graciela Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia Para Lactobacilos (i); ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Centro de Referencia Para Lactobacilos (i); Argentin

    Nutraceutics and high value added metabolites produced by lactic acid bacteria

    No full text
    Due to their broad metabolic versatility, lactic acid bacteria (LAB) have been extensively used in the food industry for the elaboration of diverse fermented foods and animal feeds. Beyond their classical application as food starter cultures, in recent years LAB have been employed as microbial cell factories for the production of interesting biochemicals such as food ingredients, commodity chemicals, and nutraceuticals. The profound study of LAB physiology together with the design of novel genetic tools for metabolic engineering studies gave rise to their use for novel biotechnological applications. The state-of-the-art of the biotechnological nutraceutic production by LAB, namely polyols (low-calorie sugars), polysaccharides, bioactive peptides, plant metabolites, and in much lesser extent vitamins (this topic will be covered in another chapter) by wild type or genetically modified LAB strains will be addressed in this chapter.Fil: Hebert, Elvira Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Savoy, Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin
    corecore