21 research outputs found

    The zinc finger transcription factor PW1/PEG3 restrains murine beta cell cycling

    Get PDF
    Aims/hypothesis: Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. Methods: We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. Results: We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. Conclusions/interpretation: These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes

    Molecular magnetic resonance imaging of liver inflammation using an oxidatively activated probe

    No full text
    Background &amp; Aims: Many liver diseases are driven by inflammation, but imaging to non-invasively diagnose and quantify liver inflammation has been underdeveloped. The inflammatory liver microenvironment is aberrantly oxidising owing in part to reactive oxygen species generated by myeloid leucocytes. We hypothesised that magnetic resonance imaging using the oxidatively activated probe Fe-PyC3A will provide a non-invasive biomarker of liver inflammation. Methods: A mouse model of drug-induced liver injury was generated through intraperitoneal injection of a hepatoxic dose of acetaminophen. A mouse model of steatohepatitis was generated via a choline-deficient, l-amino acid defined high-fat diet (CDAHFD). Images were acquired dynamically before and after intravenous injection of Fe-PyC3A. The contrast agent gadoterate meglumine was used as a non-oxidatively activated negative control probe in mice fed CDAHFD. The (post-pre) Fe-PyC3A injection change in liver vs. muscle contrast-to-noise ratio (ΔCNR) recorded 2 min post-injection was correlated with liver function test values, histologic scoring assigned using the NASH Clinical Research Network criteria, and intrahepatic myeloid leucocyte composition determined by flow cytometry. Results: For mice receiving i.p. injections of acetaminophen, intrahepatic neutrophil composition correlated poorly with liver test values but positively and significantly with ΔCNR (r = 0.64, p <0.0001). For mice fed CDAHFD, ΔCNR generated by Fe-PyC3A in the left lobe was significantly greater in mice meeting histologic criteria strongly associated with a diagnosis NASH compared to mice where histology was consistent with likely non-NASH (p = 0.0001), whereas no differential effect was observed using gadoterate meglumine. In mice fed CDAHFD, ΔCNR did not correlate strongly with fractional composition of any specific myeloid cell subpopulation as determined by flow cytometry. Conclusions: Magnetic resonance imaging using Fe-PyC3A merits further evaluation as a non-invasive biomarker for liver inflammation. Impact and implications: Non-invasive tests to diagnose and measure liver inflammation are underdeveloped. Inflammatory cells such as neutrophils release reactive oxygen species which creates an inflammatory liver microenvironment that can drive chemical oxidation. We recently invented a new class of magnetic resonance imaging probe that is made visible to the scanner only after chemical oxidation. Here, we demonstrate how this imaging technology could be applied as a non-invasive biomarker for liver inflammation

    Concise review: Macrophages: versatile gatekeepers during pancreatic β-cell development, injury, and regeneration

    No full text
    Macrophages are classically considered detrimental for pancreatic beta-cell survival and function, thereby contributing to beta-cell failure in both type 1 (T1D) and 2 (T2D) diabetes mellitus. In addition, adipose tissue macrophages negatively influence peripheral insulin signaling and promote obesity-induced insulin resistance in T2D. In contrast, recent data unexpectedly uncovered that macrophages are not only able to protect beta cells during pancreatitis but also to orchestrate beta-cell proliferation and regeneration after beta-cell injury. Moreover, by altering their activation state, macrophages are able to improve insulin resistance in murine models of T2D. This review will elaborate on current insights in macrophage heterogeneity and on the evolving role of pancreas macrophages during organogenesis, tissue injury, and repair. Additional identification of macrophage subtypes and of their secreted factors might ultimately translate into novel therapeutic strategies for both T1D and T2D

    Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy

    No full text
    Syngeneic, immunocompetent allograft tumor models recapitulate important aspects of the tumor microenvironment and have short tumor latency with predictable growth kinetics, making them useful for trialing novel therapeutics. Here, we describe surgical techniques for orthotopic and heterotopic pancreatic ductal adenocarcinoma (PDAC) tumor implantation and characterize phenotypes based on implantation site. Mice (n=8 per group) were implanted with 104 cells in the pancreas or flank. Hy15549 and Han4.13 cell lines were derived from primary murine PDAC (Ptf1-Cre; LSL-KRAS-G12D; Trp53 Lox/+) on C57BL/6 and FVB strains, respectively. Single-cell suspension and solid tumor implants were compared. Tumors were treated with two intravenous doses of FOLFIRINOX and responses evaluated. All mice developed pancreatic tumors within 7 days. Orthotopic tumors grew faster and larger than heterotopic tumors. By 3 weeks, orthotopic mice began losing weight, and showed declines in body condition requiring euthanasia starting at 4 weeks. Single-cell injection into the pancreas had near 100% engraftment, but solid tumor implant engraftment was ∼50% and was associated with growth restriction. Orthotopic tumors were significantly more responsive to intravenous FOLFIRINOX compared with heterotopic tumors, with greater reductions in size and increased apoptosis. Heterotopic tumors were more desmoplastic and hypovascular. However, drug uptake into tumor tissue was equivalent regardless of tumor location or degree of fibrosis, indicating that microenvironment differences between heterotopic and orthotopic tumors influenced response to therapy. Our results show that orthotopic and heterotopic allograft locations confer unique microenvironments that influence growth kinetics, desmoplastic response and angiogenesis. Tumor location influences chemosensitivity to FOLFIRINOX and should inform future preclinical trials. This article has an associated First Person interview with the first author of the paper

    Sources of beta cells inside the pancreas

    No full text
    The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto) immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s0012-5016-3892-9, and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2)

    Blockade of HIF-1α and STAT3 by hyaluronate-conjugated TAT- chitosan-SPION nanoparticles loaded with siRNA molecules prevents tumor growth

    Get PDF
    HIF-1α and STAT3 are two of the critical factors in the growth, proliferation, and metastasis of cancer cells and play a crucial role in inhibiting anti-cancer immune responses. Therefore, we used superparamagnetic iron oxide (SPION) nanoparticles (NPs) coated with thiolated chitosan (ChT) and trimethyl chitosan (TMC) and functionalized with hyaluronate (H) and TAT peptide for delivery of siRNA molecules against STAT3 and HIF-1α to cancer cells both in vivo and in vitro. The results indicated that tumor cell transfection with siRNAencapsulated NPs robustly inhibited proliferation and migration and induced apoptosis in tumor cells. Furthermore, simultaneous silencing of HIF-1α and STAT3 significantly repressed cancer development in two different tumor types (4T1 breast cancer and CT26 colon cancer) which were associated with upregulation of cytotoxic T lymphocytes and IFN-γ secretion. The findings suggest inhibiting the HIF-1α/ STAT3 axis by SPION-TMC-ChT-TAT-H NPs as an effective way to treat cancer
    corecore