120 research outputs found

    Hybrid incompatibility between \u3ci\u3eLDrosophila virilis\u3c/i\u3e and \u3ci\u3eD. lummei\u3c/i\u3e is stronger in the presence of transposable elements

    Get PDF
    Mismatches between parental genomes in selfish elements are frequently hypothesized to underlie hybrid dysfunction and drive speciation. However, because the genetic basis of most hybrid incompatibilities is unknown, testing the contribution of selfish elements to reproductive isolation is difficult. Here, we evaluated the role of transposable elements (TEs) in hybrid incompatibilities between Drosophila virilis and D. lummei by experimentally comparing hybrid incompatibility in a cross where active TEs are present in D. virilis (TE+) and absent in D. lummei, to a cross where these TEs are absent from both D. virilis (TE−) and D. lummei genotypes. Using genomic data, we confirmed copy number differences in TEs between the D. virilis (TE+) strain and both the D. virilis (TE−) strain and D. lummei. We observed F1 postzygotic reproductive isolation exclusively in the interspecific cross involving TE+ D. virilis but not in crosses involving TE− D. virilis. This mirrors intraspecies dysgenesis where atrophied testes only occur when TE+ D. virilis is the paternal parent. A series of backcross experiments, that accounted for alternative models of hybrid incompatibility, showed that both F1 hybrid incompatibility and intrastrain dysgenesis are consistent with the action of TEs rather than genic interactions. Thus, our data suggest that this TE mechanism manifests as two different incompatibility phenotypes. A further Y-autosome interaction contributes to additional, sex-specific, inviability in one direction of this cross-combination. These experiments demonstrate that TEs that cause intraspecies dysgenesis can increase reproductive isolation between closely related lineages, thereby adding to the processes that consolidate speciation

    Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility

    Get PDF
    New models of TE repression in plants (specifically Arabidopsis) have suggested specific mechanisms by which TE misregulation in hybrids might result in the expression of hybrid inviability. If true, these models suggest as yet undescribed consequences for (1) mechanistic connections between hybrid problems expressed at different postzygotic stages (e.g., inviability versus sterility), (2) the predicted strength, stage, and direction of isolation between diverging lineages that differ in TE activity, and (3) the association between species attributes that influence TE dynamics (e.g., mode of reproduction, geographical structure) and the rate at which they could accumulate incompatibilities. In this paper, we explore these implications and outline future empirical directions for generating data necessary to evaluate them

    Mechanisms of Speciation

    Get PDF

    Asymmetrical crossing barriers in angiosperms

    Get PDF
    Patterns of reproductive isolation between species may provide insight into the mechanisms and evolution of barriers to interspeci¢c gene exchange. We used data from published interspeci¢c hybridization experiments from 14 genera of angiosperms in order to test for the presence of asymmetrical barriers to gene exchange. Reproductive isolation was examined at three life-history stages: the ability of interspeci¢c crosses to produce seeds, the viability of F 1 hybrids, and the fertility of F 1 hybrids. Statistically signi¢cant asymmetries in the strength of reproductive isolation between species were detected in all genera and at each of the three life-history stages. Asymmetries in seed production may be caused by a variety of mechanisms including di¡erences in stigma/style lengths, self compatibility and di¡erential fruit abortion. Asymmetries in post-zygotic isolation are probably caused by nuclear^cytoplasmic interactions. Asymmetrical reproductive isolation between plant taxa may have important implications for the dynamics of hybrid zones, the direction of genetic introgression and the probability of reinforcement

    Highly contiguous assemblies of 101 drosophilid genomes

    Get PDF
    Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species

    Asymmetric Postmating Isolation: Darwin's Corollary to Haldane's Rule

    No full text
    Asymmetric postmating isolation, where reciprocal interspecific crosses produce different levels of fertilization success or hybrid sterility/inviability, is very common. Darwin emphasized its pervasiveness in plants, but it occurs in all taxa assayed. This asymmetry often results from Dobzhansky–Muller incompatibilities (DMIs) involving uniparentally inherited genetic factors (e.g., gametophyte–sporophyte interactions in plants or cytoplasmic–nuclear interactions). Typically, unidirectional (U) DMIs act simultaneously with bidirectional (B) DMIs between autosomal loci that affect reciprocal crosses equally. We model both classes of two-locus DMIs to make quantitative and qualitative predictions concerning patterns of isolation asymmetry in parental species crosses and in the hybrid F1 generation. First, we find conditions that produce expected differences. Second, we present a stochastic analysis of DMI accumulation to predict probable levels of asymmetry as divergence time increases. We find that systematic interspecific differences in relative rates of evolution for autosomal vs. nonautosomal loci can lead to different expected F1 fitnesses from reciprocal crosses, but asymmetries are more simply explained by stochastic differences in the accumulation of U DMIs. The magnitude of asymmetry depends primarily on the cumulative effects of U vs. B DMIs (which depend on heterozygous effects of DMIs), the average number of DMIs required to produce complete reproductive isolation (more asymmetry occurs when fewer DMIs are required), and the shape of the function describing how fitness declines as DMIs accumulate. Comparing our predictions to data from diverse taxa indicates that unidirectional DMIs, specifically involving sex chromosomes, cytoplasmic elements, and maternal effects, are likely to play an important role in postmating isolation
    corecore