528 research outputs found

    Fluorine production in intermediate-mass stars

    Get PDF
    The 19F production during the first dozen thermal pulses of AGB stars with (M=3,Z=0.02), (M=6,Z=0.02) and (M=3,Z=0.001) is investigated on grounds of detailed stellar models and of revised rates for 15N(a,g)19F and 18O(a,g)22Ne. These calculations confirm an early expectation that 19F {\it is} produced in AGB thermal pulses. They also enlarge substantially these previous results by showing that the variations of the level of 19F production during the evolution is very sensitive to the maximum temperature reached at the base of the pulse. These variations are analyzed in detail, and are shown to result from a subtle balance between different nuclear effects (mainly 19F production or destruction in a pulse, and 15N synthesis during the interpulse), possibly super-imposed on dilution effects in more or less extended pulse convective tongues. Our calculations, as most others, do not predict the third dredge-up self- consistently. When parametrized, it appears that our models of intermediate-mass AGB stars are able to account only for the lowest 19F overabundances observed in solar-metallicity MS, S and C stars. That conclusion is expected to hold true for low-mass stars when F production results from secondary 13C only. Massive AGB stars, on the other hand, are not expected to build up large surface F abundanc- es. Therefore, the large F overabundance reported for the super Li-rich star WZ Cas (where HBB is supposed to be operating) remains unexplained so far. Our results for the (M=3,Z=0.001) star indicate that F surface overabundances can also be expected in low-metallicity stars provided that third dredge-ups occur after the early cool pulses. The relative increase in the surface 19F/12C ratio is, however, lower in the low-metallicity than in the solar-metallicity star. No observations areComment: 27 pages, includes figures, postcript file (A&A format, 15 pages including figures) can be found via anonymous ftp at ftp://obsftp.unige.ch/pub/mowlavi/fluor.ps.gz ; accepted by A&

    Grids of stellar models. VIII. From 0.4 to 1.0 Msun at Z=0.020 and Z=0.001, with the MHD equation of state

    Full text link
    We present stellar evolutionary models covering the mass range from 0.4 to 1 Msun calculated for metallicities Z=0.020 and 0.001 with the MHD equation of state (Hummer & Mihalas, 1988; Mihalas et al. 1988; D\"appen et al. 1988). A parallel calculation using the OPAL (Rogers et al. 1996) equation of state has been made to demonstrate the adequacy of the MHD equation of state in the range of 1.0 to 0.8 Msun (the lower end of the OPAL tables). Below, down to 0.4 Msun, we have justified the use of the MHD equation of state by theoretical arguments and the findings of Chabrier & Baraffe (1997). We use the radiative opacities by Iglesias & Rogers (1996), completed with the atomic and molecular opacities by Alexander & Fergusson (1994). We follow the evolution from the Hayashi fully convective configuration up to the red giant tip for the most massive stars, and up to an age of 20 Gyr for the less massive ones. We compare our solar-metallicity models with recent models computed by other groups and with observations. The present stellar models complete the set of grids computed with the same up-to-date input physics by the Geneva group [Z=0.020 and 0.001, Schaller et al. (1992), Bernasconi (1996), and Charbonnel et al. (1996); Z=0.008, Schaerer et al. (1992); Z=0.004, Charbonnel et al. (1993); Z=0.040, Schaerer et al. (1993); Z=0.10, Mowlavi et al. (1998); enhanced mass loss rate evolutionary tracks, Meynet et al. (1994)].Comment: Accepted for publication in A&A Supplement Serie

    Gaia Eclipsing Binary and Multiple Systems. A study of detectability and classification of eclipsing binaries with Gaia

    Full text link
    In the new era of large-scale astronomical surveys, automated methods of analysis and classification of bulk data are a fundamental tool for fast and efficient production of deliverables. This becomes ever more imminent as we enter the Gaia era. We investigate the potential detectability of eclipsing binaries with Gaia using a data set of all Kepler eclipsing binaries sampled with Gaia cadence and folded with the Kepler period. The performance of fitting methods is evaluated with comparison to real Kepler data parameters and a classification scheme is proposed for the potentially detectable sources based on the geometry of the light curve fits. The polynomial chain (polyfit) and two-Gaussian models are used for light curve fitting of the data set. Classification is performed with a combination of the t-SNE (t-distrubuted Stochastic Neighbor Embedding) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithms. We find that approximately 68% of Kepler Eclipsing Binary sources are potentially detectable by Gaia when folded with the Kepler period and propose a classification scheme of the detectable sources based on the morphological type indicative of the light curve, with subclasses that reflect the properties of the fitted model (presence and visibility of eclipses, their width, depth, etc.).Comment: 9 pages, 18 figures, accepted for publication in Astronomy & Astrophysic

    26Al yields from rotating Wolf--Rayet star models

    Full text link
    We present new 26^{26}Al stellar yields from rotating Wolf--Rayet stellar models which, at solar metallicity, well reproduce the observed properties of the Wolf-Rayet populations. These new yields are enhanced with respect to non--rotating models, even with respect to non--rotating models computed with enhanced mass loss rates. We briefly discuss some implications of the use of these new yields for estimating the global contribution of Wolf-Rayet stars to the quantity of 26^{26}Al now present in the Milky Way.Comment: 6 pages, 2 figures, to appear in New Astronomy Review

    FUSE Measurements of Interstellar Fluorine

    Full text link
    The source of fluorine is not well understood, although core-collapse supernovae, Wolf-Rayet stars, and asymptotic giant branch stars have been suggested. A search for evidence of the nu process during Type II supernovae is presented. Absorption from interstellar F I is seen in spectra of HD 208440 and HD 209339A acquired with the Far Ultraviolet Spectroscopic Explorer. In order to extract the column density for F I from the line at 954 A, absorption from H2 has to be modeled and then removed. Our analysis indicates that for H2 column densities less than about 3 x 10^20 cm^-2, the amount of F I can be determined from lambda 954. For these two sight lines, there is no clear indication for enhanced F abundances resulting from the nu process in a region shaped by past supernovae.Comment: 17 pages, 4 figures, accepted for publication in Ap

    Searching for variable stars in Galactic Open Clusters

    Get PDF
    A long-term project, aiming at systematic search for variable stars in Galactic Open Clusters, was started at the Geneva Observatory in 2002. We have been observing regularly a sample of twenty-seven Galactic Open Clusters in the U, B, V Geneva filters. The goal is to identify and to study their variable stars, as well as the connection between the variable stars in a cluster and the cluster properties. We present the status of this work in progress, and show preliminary results for one of these clusters, IC 4651.Comment: To appear in the proceedings of Stellar Pulsation: Challenges for theory and observations Conference, Santa Fe, NM, US

    Investigating Cepheid ℓ\ell Carinae's Cycle-to-cycle Variations via Contemporaneous Velocimetry and Interferometry

    Full text link
    Baade-Wesselink-type (BW) techniques enable geometric distance measurements of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading uncertainties involved concern projection factors required to translate observed radial velocities (RVs) to pulsational velocities and recently discovered modulated variability. We carried out an unprecedented observational campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy (Euler/Coralie) to search for modulated variability in the long-period (P ∌\sim 35.5 d) Cepheid Carinae. We determine highly precise angular diameters from squared visibilities and investigate possible differences between two consecutive maximal diameters, ΔmaxΘ\Delta_{\rm{max}} \Theta. We characterize the modulated variability along the line-of-sight using 360 high-precision RVs. Here we report tentative evidence for modulated angular variability and confirm cycle-to-cycle differences of ℓ\ell Carinae's RV variability. Two successive maxima yield ΔmaxΘ\Delta_{\rm{max}} \Theta = 13.1 ±\pm 0.7 (stat.) {\mu}as for uniform disk models and 22.5 ±\pm 1.4 (stat.) {\mu}as (4% of the total angular variation) for limb-darkened models. By comparing new RVs with 2014 RVs we show modulation to vary in strength. Barring confirmation, our results suggest the optical continuum (traced by interferometry) to be differently affected by modulation than gas motions (traced by spectroscopy). This implies a previously unknown time-dependence of projection factors, which can vary by 5% between consecutive cycles of expansion and contraction. Additional interferometric data are required to confirm modulated angular diameter variations. By understanding the origin of modulated variability and monitoring its long-term behavior, we aim to improve the accuracy of BW distances and further the understanding of stellar pulsations.Comment: Accepted for publication in MNRAS. 19 pages, 13 figures, 10 table

    High-Energy sources before INTEGRAL -- INTEGRAL reference catalog --

    Full text link
    We describe the INTEGRAL reference catalog which classifies previously known bright X-ray and gamma-ray sources before the launch of INTEGRAL. These sources are, or have been at least once, brighter than ~1 mCrab above 3 keV, and are expected to be detected by INTEGRAL. This catalog is being used in the INTEGRAL Quick Look Analysis to discover new sources or significantly variable sources. We compiled several published X-ray and gamma-ray catalogs, and surveyed recent publications for new sources. Consequently, there are 1122 sources in our INTEGRAL reference catalog. In addition to the source positions, we show an approximate spectral model and expected flux for each source, based on which we derive expected INTEGRAL counting rates. Assuming the default instrument performances and at least ~10^5 sec exposure time for any part of the sky, we expect that INTEGRAL will detect at least ~700 sources below 10 keV and ~400 sources above 20 keV over the mission life.Comment: Accepted to A&A Letter INTEGRAL special issu
    • 

    corecore