313 research outputs found

    Triple-frequency GNSS models for PPP with float ambiguity estimation: performance comparison using GPS

    Get PDF
    This contribution proposes two new precise point positioning (PPP) models that use triple-frequency data, designed to accelerate convergence of carrier-phase float ambiguities. The first model uses a triple-frequency ionosphere-free linear combination that has minimum noise propagation and geometry-preserving properties. The second model uses a mixed code and carrier-phase linear combination with the same properties. A third model was also implemented, which uses individual uncombined triple-frequency measurements. The three models were validated using triple-frequency GPS data and their performance was compared to the traditional dual-frequency model in terms of the convergence time taken to achieve and maintain a uniform three-dimensional accuracy of 5 cm. Testing includes PPP processing of 1-h measurement blocks using 1–8 days of data from three locations in Australia. It was shown that all the three triple-frequency models had improved solution convergence time compared to the traditional PPP dual-frequency model although they gave almost similar accuracy and precision. The convergence time, when using the triple-frequency ionosphere-free model improved, by 10%, the improvement was 9% when using the mixed code-phase model, whereas the individual uncombined model resulted in 8% improvement

    Comparison of advanced troposphere models for aiding reduction of PPP convergence time in Australia

    Get PDF
    This paper first analyses the precision of tropospheric zenith total delay (ZTD) values obtained from the empirical models GPT2 and GPT2w, and the numerical weather models (NWM) from Australian Bureau of Meteorology (BoM), and European Centre for Medium-Range Weather Forecasts (ECMWF). Comparison of these ZTD values with IGS ZTD product at four sites showed that the ZTDs from NWM datasets were more precise than the empirical models. The ZTD from BoM data gave the best results, with mean errors between -0.034 m to 0.029 m and standard deviations better than 0.045 m. Next, the PPP convergence time and achievable accuracy using the BoM NWM constrained ZTD by including them as pseudo-observations with a pre-set precision was compared to the case of estimating the troposphere. This resulted in a slight enhancement in convergence time, and improvements in vertical positioning accuracy was found at all the four tested sites at 0.036–0.058 m after 2 min, 0.023–0.038 m after 3 min and 0.013–0.020 m after 5 min of PPP initialisation

    The stability of tide gauges in the South Pacific determined from multi-epoch geodetic levelling, 1992 to 2010

    Get PDF
    Tide gauge data is important for determining global or local sea level rise with respect to a global geocentric reference frame. Data from repeated precise levelling connections between the tide gauges and a series of coastal and inland benchmarks, including Continuous GPS (CGPS) benchmarks, are used to determine the stability of tide gauges at 12 locations in the South Pacific. The method for determining this stability is based on a constant velocity model which minimises the net movement amongst a set of datum benchmarks surveyed since the installation of the tide gauges. When assessed at a 95% confidence interval, and with the exception of the Solomon Islands, none of the tide gauges were found to be in motion relative to their CGPS benchmarks. The Solomon Islands estimate is considered to be unreliable since the CGPS benchmark was recently established and has been surveyed fewer than three times. In Tonga and Cook Islands, the tide gauges were found to be disturbed or affected by survey errors whereas the Vanuatu results were affected by earthquakes

    Maintaining real-time precise point positioning during outages of orbit and clock corrections

    Get PDF
    The precise point positioning (PPP) is a popular positioning technique that is dependent on the use of precise orbits and clock corrections. One serious problem for real-time PPP applications such as natural hazard early warning systems and hydrographic surveying is when a sudden communication break takes place resulting in a discontinuity in receiving these orbit and clock corrections for a period that may extend from a few minutes to hours. A method is presented to maintain real-time PPP with 3D accuracy less than a decimeter when such a break takes place. We focus on the open-access International GNSS Service (IGS) real-time service (RTS) products and propose predicting the precise orbit and clock corrections as time series. For a short corrections outage of a few minutes, we predict the IGS-RTS orbits using a high-order polynomial, and for longer outages up to 3 h, the most recent IGS ultra-rapid orbits are used. The IGS-RTS clock corrections are predicted using a second-order polynomial and sinusoidal terms. The model parameters are estimated sequentially using a sliding time window such that they are available when needed. The prediction model of the clock correction is built based on the analysis of their properties, including their temporal behavior and stability. Evaluation of the proposed method in static and kinematic testing shows that positioning precision of less than 10 cm can be maintained for up to 2 h after the break. When PPP re-initialization is needed during the break, the solution convergence time increases; however, positioning precision remains less than a decimeter after convergence

    A Framework for Pilot Line Scale-up using Digital Manufacturing

    Get PDF
    Pilot lines are essential test-beds for process and product validation before the establishment of production lines. However, there is a lack of well-defined methodology for pilot line scale-up. To better support this transition, Virtual Models can be integrated with Discrete-Event Simulation (DES) models for potential production-line configurations. However, the validation of the developed models is hardly possible due to the absence of a physical counterpart. Therefore, this paper proposes a framework to increase the accuracy of the DES scale-up models with Virtual Modelling tools and Ontology. Subsequently, a test-case is used to explain the concept

    Investigating the ability of high-rate GNSS-PPP for determining the vibration modes of engineering structures: small scale model experiment

    Get PDF
    This study evaluates the performance of the Precise Point Positioning method using Global Navigation Satellite System measurements (GNSS-PPP) for monitoring vibration modes of shear type buildings excited by harmonic ground motions and hammer tests. For experimental testing, the shear type lumped-mass building system is represented by a specially designed metal frame model, resembling a three story building, which was excited on a small scale shaking table. The excitation protocols applied were harmonic motions with different frequencies and amplitudes. The metal model has special deformation plates at the column tips to prevent the nonlinear rotations and out-of-plane motions for the entire system. The fundamental vibration periods of the model structure were computed by a Finite Element Mathematical (FEM) model, which were compared with the position variations determined by GNSS-PPP. Two GNSS receivers were mounted on top of the model structure on the line perpendicular to the motion axis to measure the rotation motion. The GNSS data comprised dual-frequency observations with a 10 Hz sampling rate. GNSS-derived positioning was obtained by processing the data using a post-mission kinematic PPP method with fixed phase ambiguities. Analysis of the characteristics of the vibration frequencies showed that the high-rate GNSS PPP method can capture the frequencies of first motion mode of shear type structural response when compared with the FEM output. Results demonstrate the efficiency of the high-rate GNSS PPP method in monitoring first motion mode of a natural frequency

    Crustal deformation across and beyond Central Europe and its impact on the boundaries

    Get PDF
    Land is a critical and limited natural resource. The Land Administration System (LAS) has been developed to resolve and adjudicate over any disputes that might arise concerning the rights and boundaries of land. Land registration and cadastre are types of land recording that need to be established. To secure the property rights, we must be sure of accuracy of the boundary points determining the size of the property. However, in addition to typical factors considered when determining the boundary point positions, such as accuracy of geodetic networks and measurement errors, the global and local crustal deformation, resulting, e.g., from the movement of tectonic plates, should be considered. In this work, the focus is on the movement of points inside the European plate due to tectonic movement, without taking into account local events caused by erosion, landslides, etc. The study area is Europe, and particular attention was paid to Poland, which is located in the centre of the European continent and does not have significant anomalous sub-areas, making it an authoritative research object. In this study, we analysed the velocity of point displacements and the boundary deformation, using GPS observations. For this reason, we used both global (IGS) and regional (ETRF) reference frames, to show differences in point velocities for the studied areas. Overall, for the needs of the real estate cadastre in Poland, information about parcel boundary points must be obtained with an accuracy better than 0.30 m. Within 25 years, the border mark may be shifted by 0.13 m due to tectonic plate movement, which is within the required accuracy. Pursuant to the current legal regulations, the measurements of the boundary points can be performed with any method, ensuring the required accuracy (0.30 m). The most commonly used are direct measurements (GNSS and tacheometry) and photogrammetric measurements. It is recommended that periodic verifications and update of the cadastre data in Poland be carried out at least once every 15 years. In the case of such relatively frequent verification and possible modernisation of data, the potential impact of tectonic plate movement on the relative boundary point displacement can be ignored, particularly in the short term. However, for a long time period it has an influence. We suggest “relatively frequent” cadastral boundary verification to be able to ignore such influence

    Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table

    Get PDF
    © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and with ambiguity resolution (PPP-AR), in structural health monitoring applications based on experimental tests using a single-axis shake table. To evaluate the performance of the PPP methodologies, harmonic oscillations of the motion table with amplitudes ranging from 5 to 10 mm and frequency between 0.1 and 3 Hz were generated representing a wide range of possible structural motions. In addition, ground motion similar to those experienced during a real earthquake, the 1995 Kobe earthquake, and step motions were generated on the shake table. GNSS PPP-derived positioning results at 20 Hz were compared, in both of the frequency and time domains, with reference data comprising LVDT data and relative positioning data. Results show that both PPP methods' measurements can be used in the computation of harmonic oscillation frequencies compared to the LVDT and relative positioning values. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT values on the order of millimeters. The results of a step motion experiment demonstrated that PPP-AR is better than traditional PPP in exhibiting quasi-static or static displacement. Moreover, the capabilities of traditional PPP and PPP-AR methods are evaluated with respect to the natural frequency of a small-scale structural model excited on the shake table. The frequency spectrum of this small-scale structural model derived from the PPP methods is consistent with finite-element model (FEM)-predicted values and relative positioning. The research presented here demonstrates the potential of the high-rate GNSS PPP and PPP-AR methods to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both structural and seismological applications. Specifically, all results reveal that high-rate PPP-AR is more accurate than traditional PPP for both dynamic and static displacement detection

    Restorative Thresholds for Carious Lesions:Systematic Review and Meta-analysis

    Get PDF
    Current evidence supports noninvasive/nonrestorative treatment of “early” carious lesions: those confined to enamel or reaching the enamel-dentin junction. The extent that dentists’ thresholds for intervening restoratively have changed with this evidence is unknown. This systematic review aimed to determine dentists’ and therapists’ current lesion threshold for carrying our restorative interventions in adults/children and primary/permanent teeth. Embase, Medline via PubMed, and Web of Science were searched for observational studies, without language, time, or quality restrictions. Screening and data extraction were independent and in duplicate. Random-effects meta-analyses with subgroup and meta-regression analysis were performed. Thirty studies, mainly involving dentists, met the inclusion criteria. There was heterogeneity in sampling frames, methods, and scales used to investigate thresholds. The studies spanned 30 y (1983–2014), and sample representativeness and response bias issues were likely to have affected the results. Studies measured what dentists said they would do rather than actually did. Studies represented 17 countries, focusing mainly on adults (n = 17) and permanentteeth (n = 24). For proximal carious lesions confined to enamel (not reaching the enamel-dentin junction), 21% (95% confidence interval [CI], 15%–28%) of dentists/therapists would intervene invasively. The likelihood of a restorative intervention almost doubled (risk ratio, 1.98; 95% CI, 1.68–2.33) in high caries risk patients. For proximal lesions extending up to the enamel-dentin junction, 47% (95% CI, 39%–55%) of dentists/therapists would intervene restoratively. For occlusal lesions with enamel discoloration/cavitation but no clinical/radiographic dentin involvement, 12% (95% CI, 6%–22%) of dentists/therapists stated they would intervene, increasing to 74% (95% CI,56%–86%) with dentin involvement. There was variance between countries but no significant temporal trend. A significant proportion of dentists/therapists said they would intervene invasively (restoratively) on carious lesions where evidence and clinical recommendations indicate less invasive therapies should be used. There is great need to understand decisions to intervene restoratively and to find implementation interventions that translate research evidence into clinical practice
    • …
    corecore