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Abstract 

This paper firstly analyses the precision of tropospheric zenith total delay (ZTD) values 
obtained from the empirical models GPT2 and GPT2w, and the numerical weather 

models (NWM) from Australian Bureau of Meteorology (BoM), and European Centre 
for Medium-Range Weather Forecasts (ECMWF). Comparison of these ZTD values 

with IGS ZTD product at four sites showed that the ZTDs from NWM datasets were 

more precise than the empirical models. The ZTD from BoM data gave the best results, 

with mean errors between -0.034m to 0.029m and standard deviations better than 
0.045m. 

Next, the PPP convergence time and achievable accuracy using the BoM NWM 

constrained ZTD by including them as pseudo-observations with a pre-set precision 
was compared to the case of estimating the troposphere. This resulted in a slight 

enhancement in convergence time, and improvements in vertical positioning accuracy 

was found at all the four tested sites at 0.036-0.058m after 2 minutes, 0.023-0.038m 
after 3 minutes and 0.013-0.020m after 5 minutes of PPP initialisation.  

Keywords: precise point positioning, troposphere constraint, numerical weather 
models, convergence, GNSS 

1. Introduction

The troposphere is that part of the atmosphere between the Earth’s surface up to an 

altitude of approximately 20-60km (El-Mowafy and Lo, 2014). It delays GNSS signals 

travelling through the same path equally, irrespective of their frequencies, and is thus usually 

referred to as the neutral atmosphere. The magnitude of total tropospheric delay depends on 

the signal path through the neutral atmosphere. It is typically lowest in the zenith direction 

and increases as the satellite elevation angle is reduced. It consists of a hydrostatic or dry 

component, which can be modelled accurately to an accuracy of 98% with an empirical 

model such as the Saastamoinen (Saastamoinen 1973) model, and a wet component which is 

more difficult to model precisely due to the temporal changes in water vapour pressure along 

the troposphere layer. The standard PPP model considers the troposphere to be isometric and 

estimates either the zenith total delay (ZTD), or computes the zenith hydrostatic delay (ZHD) 

with an empirical model and estimates the zenith wet delay (ZWD) as a parameter. Mapping 

functions, such as the Vienna Mapping Function (VMF), are then used to calculate the 

tropospheric delay at the observed satellite elevation angle, as discussed in Tuka and El-

Mowafy (2013) where several mapping functions were compared. However, the ZWD is 

highly correlated with the height parameter (Kjørsvik et al., 2006) and it requires a significant 

change in satellite geometry and longer observation time to reliably separate the correlation 

between these parameters. The commonly used random walk or first-order Gauss-Markov 

autocorrelation models often underestimate the temporal correlations in the ZWD, thus more 

complex dynamic models are required to depict the water vapour variability (El-Mowafy and 

Lo, 2014). Ultimately, the troposphere is a nuisance parameter in PPP and if it is known 
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apriori from an external model with inherent accuracy, appropriate constraints may be 

applied to improve the PPP model. This may result in a reduction in convergence time or 

improve the achieved accuracy, which is a key problem in PPP.  

Several researchers have considered constraining the troposphere error by using empirical 

models or external data. Kjørsvik et al. (2006) compared PPP performance for the UNB3 

empirical tropospheric model developed by Collins and Langley (1996) with the traditional 

model that estimated the tropospheric error as a parameter. The nominal accuracy of the 

apriori ZWD model from UNB3 model was 0.035m and when depending on this only, the 

study showed that horizontal accuracy of sub-0.2m can be achieved. The vertical accuracy 

was much worse, which did not improve with longer observation periods. Shi et al. (2014) 

computed the precise tropospheric corrections generated from a local area network of GNSS 

receivers, which are next transmitted to users as a second order polynomial function to 

improve PPP performance. Thus, users get improved PPP accuracy and convergence time 

when located within the GNSS network coverage area that is used to determine tropospheric 

corrections. The Trimble RTX service with tropospheric correction models the ZTD from a 

network of GNSS stations and reported providing sub-0.05m level horizontal PPP accuracy 

within a few minutes (Talbot et al., 2015). Laurichesse and Privat (2015) used well-

determined troposphere and ionosphere information from regional augmentation to reduce 

PPP convergence time to within minutes.  

Zhang et al. (2016) compared three tropospheric models – IGGtrop, EGNOS and UNB3m for 

PPP within China. The IGGtrop, which had an RMS error of 0.044m compared to precise 

IGS final ZTD products, gave the best positioning accuracy in the vertical component with a 

mean positioning error of 0.15m. The EGNOS and UNB3m models gave slightly worse mean 

vertical errors of 0.21m and 0.19m respectively. However, the IGGtropo, a 3-dimensional 

grid based model, has been developed to provide tropospheric delay for the users of Chinese 

Beidou Navigation Satellite System and the area augmentation system based on BDS in 

China (Zhang et al., 2016). It uses a 3D grid to calculate ZTD to obtain more homogenous 

performances for different areas of China, hence giving superior performance in the BDS 

coverage area. It may also be applied on a global scale with a mean bias of −0.8 cm and RMS 

of 4.0 cm, which is comparable to the EGNOS and UNB3m models (Li et al., 2012).  

Other empirical troposphere models that may be used in PPP include European Space 

Agency GAL-TROPO (Martellucci 2012), TropGrid (Kruegger et al., 2004) and its update 

TopGrid2 (Schüler, 2014). Zheng et al. (2017) developed a new troposphere correction model 

based on GPT2w to reduce PPP convergence time. The RMS of the ZTD with this model was 

1.2cm, compared to 3.6cm for GPT2w. The improvement was due to a modified parameter of 

the ZWD exponential delay with respect to height. When the new model was applied to PPP, 

the convergence time reduced significantly by 20-50% for Beidou only PPP, due to the 

significant improvement in geometry for this constellation. Zhou et al. (2017) developed two 

site specific troposphere models based on the Saastamoinen and Callaham models using 

radiosonde data from 2005 to 2012. The Saastamoinen based model had the best performance 

with a mean bias of 0.19cm and RMS of 3.19cm. The study also showed that troposphere 

models based on actual data perform better when recent meteorological data is used to build 

the model. This implies that tropospheric models require regular updates to remain valid. Lu 

et al. (2017) used multi-constellation GNSS data from the IGS Multi-GNSS Experiment 

(MGEX) network of 30 global stations to retrieve a real-time troposphere model using the 

PPP technique. The ZTD estimates from the GFZC2 IGS real-time service gave the best 

accuracy of 5.06mm. With multi-constellation GNSS data, the accuracy of the real-time ZTD 
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improved further by up to 22.2%, compared to the GPS only case. Vaclavovic et al. (2017) 

developed an augmented troposphere model for real-time kinematic PPP, using Numerical 

Weather Model (NWM) data which reflected the actual state of the atmosphere. When the 

ZTD was estimated as a parameter, the study found considerable correlation between the 

rover height and the ZTD, as also reported in Kjørsvik et al. (2006). When using the external 

tropospheric model, the PPP solution improved by shortened convergence time, better 

robustness in the case of degraded satellite geometry, and less parameters with lower 

correlation. The height accuracy of the PPP solution in kinematic model was 9-12cm when 

using external troposphere model. Lu et al. (2016) developed a NWM constrained PPP model 

to improve the performance of multi-constellation GNSS PPP. The troposphere delay 

parameter from the European Centre for Medium-Range Weather Forecasts (ECMWF) was 

used in a four constellation (GPS, GLONASS, Beidou and Galileo) PPP model. The standard 

PPP results were compared to the NWM constrained results. In standard PPP, the 

tropospheric ZHD delay was corrected using GPT2, whereas ZWD was estimated as an 

unknown parameter along with receiver position, receiver clock, two horizontal tropospheric 

gradients (north-south and east-west components), ionosphere delays, code biases and carrier 

phase ambiguities. In the NWM constrained PPP, the ZWD from ECMWF was used as an 

apriori value, but a residual wet delay parameter was estimated to account for the 

imperfections in the ZWD derived from the NWM. Thus, the ZWD and two horizontal 

tropospheric gradients in the standard PPP model were replaced by a single residual wet 

delay parameter, hence reducing the number of unknown parameters by two. The 

improvements in convergence time in the NWM constrained PPP model was 20%, 32% and 

25% in the north, east and vertical components, whereas positioning accuracy improved by 

2.5%, 12.1% and 18.7% in the same components. 

In this contribution, we study the feasibility of applying tropospheric models from four 

different sources to constrain the tropospheric ZTD parameter. These are the empirical 

models GPT2 and its revision GPT2w, the NWM from ECMWF gridded data product, and 

for the first time the Australian Bureau of Meteorology (BoM) GRIB version 2 data. The use 

of atmospheric profiles from radio occultation data from COSMIC/ FORMOSAT-3 satellites 

was also considered, but this was not found to be feasible at present due to the limited 

number of satellites. This analysis was conducted for a period of one year. We next compare 

the performance of using the BoM model to constraint the troposphere error, which gave the 

best precision out of the four tested models, in terms of PPP convergence time and achievable 

accuracy, to the traditional case where the troposphere is estimated as an unknown parameter. 

We apply appropriate weighting to the troposphere correction model as determined from the 

long term analysis to the constraint equations. While other researchers (e.g. Kjørsvik et al., 

2006) have attempted constraining the troposphere with a dual-frequency model in PPP, our 

study focuses on use of triple frequency data from multi-constellation GNSS. The availability 

of triple frequency civil signals is a feature of the major GNSS constellations such as GPS, 

Galileo, and Beidou. Therefore, we study the attainment of sub-decimetre PPP accuracy with 

multi-constellation and multi-frequency GNSS data with advanced NWM data from BoM to 

constrain the troposphere. 

The next section briefly describes each of the tropospheric models that were studied, their 

data sources, and application. Next, we evaluate their accuracy by comparing them to the IGS 

final ZTD values at selected Australian sites over a one-year period. Finally, we analyse the 

impact of applying the BoM NWM constrained troposphere on PPP convergence time and 

accuracy. 
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2. PPP Functional Model 

This section presents the PPP functional model for estimating the ZTD as a parameter, 

followed by constraining it by using external information. In this study, the triple frequency 

PPP model with code-only and phase-only triple frequency ionosphere free code and phase 

combinations was used with simulated multi-constellation GNSS data from GPS, Beidou and 

Galileo constellations. The phase- and code-only ionosphere free, geometry preserving and 

least noise propagation linear combination was used in the PPP model, which leads to 

improved convergence performance (Deo and El-Mowafy, 2016). This combination is 

expressed as:  

𝑃(𝐼𝐹) = 𝛼1𝑃1 + 𝛼2𝑃2 + 𝛼3𝑃3  (1) 

𝜙(𝐼𝐹) = 𝛼1𝜙1 + 𝛼2𝜙2 + 𝛼3𝜙3  (2) 

where 𝑃(𝐼𝐹), 𝜙(𝐼𝐹) are the triple frequency code and phase linear combinations, 𝑃1, P2, P3 

and  𝜙1, 𝜙2,𝜙3 are the code and phase measurements on individual frequencies (e.g. L1, L2 

and L5 for GPS) and 𝛼1, 𝛼2, 𝛼3 are the linear combinations coefficients. 

2.1 Estimating the Troposphere as a parameter 

The equations for the functional models for GPS, Beidou and Galileo are given below, after 

application of satellite clock correction and differential hardware biases. In this model, the 

ZHD is computed with an empirical model and the ZWD is estimated as a parameter in the 

vertical component which is projected along the receiver-to-satellite line of sight using a wet 

mapping function (𝑚𝑤).  
For example, using the GPS constellation, denoted as G we have: 

𝑃(𝐼𝐹)𝐺 = 𝛼1,𝐺  𝑃𝐿1
𝐺 + 𝛼2,𝐺  𝑃𝐿2

𝐺 + 𝛼3,𝐺  𝑃𝐿5
𝐺 = ρ𝐺 + 𝑐𝑑𝑡G +𝑚𝑤

𝐺  𝑍𝑊𝐷 + 𝜀P
G (3) 

𝜙(𝐼𝐹)𝐺 = 𝛼1,𝐺  𝜙𝐿1
𝐺 + 𝛼2,𝐺  𝜙𝐿2

𝐺 + 𝛼3,𝐺  𝜙𝐿5
𝐺 = ρ𝐺 + 𝑐𝑑𝑡G + 𝜆𝐺𝑁

∗𝐺+𝑚𝑤
𝐺  𝑍𝑊𝐷 + 𝜀ϕ

G (4) 

 

where 𝐺 is a GPS satellite,  ρ𝐺 is the satellite-to-receiver geometric range, 𝑐 is the speed of 

light in vacuum; 𝑑𝑡G is the receiver clock offset; 𝑁∗𝐺 is the non-integer phase ambiguity;  𝜀𝑃𝑖
G  

and 𝜀ϕ𝑖
𝐺  comprises code and phase measurement combined noise and multipath, respectively. 

The best coefficient values estimated for the above combination are : 𝛼1,𝐺 = 2.326 944, 

𝛼2,𝐺 = −0.359 646, and 𝛼3,𝐺 = −0.967 299 (Li et al. 2014; Deo and El-Mowafy 2016).   

For the Beidou constellation (denoted as 𝐶) the observation equations are: 

𝑃𝐶 = 𝛼1,𝐶  𝑃𝐵1
𝐶 + 𝛼2,𝐶  𝑃𝐵2

𝐶 + 𝛼3,𝐶  𝑃𝐵3
𝐶 = ρ𝐶 + 𝑐𝑑𝑡𝐺 + 𝐼𝑆𝐵𝐺−𝐶 +𝑚𝑤

𝐶  𝑍𝑊𝐷 + 𝜀𝑃𝑗
C  (5) 

𝜙𝐶 = 𝛼1,𝐶  𝜙𝐵1
𝐶 + 𝛼2,𝐶  𝜙𝐵2

𝐶 + 𝛼3,𝐶  𝜙𝐵3
𝐶 = ρ𝐶 + 𝑐𝑑𝑡𝐺 + 𝐼𝑆𝐵𝐺−𝐶 + 𝜆𝐶𝑁

∗𝐶 +𝑚𝑤
𝐶  𝑍𝑊𝐷 + 𝜀𝜙

C (6) 

 

The terms are similar to the ones described for system 𝐺 above, with the addition of 

𝐼𝑆𝑇𝐵𝐺−𝐶 , which is the inter-system time bias between GPS and Beidou, combined for the 

receiver and the satellite. For Beidou, the coefficient values are found to be: 𝛼1,𝐶 =

2.566 439, 𝛼2,𝐶 = −1.228 930, and 𝛼3,𝐶 = −0.337 510. 

Similar ionosphere-free equations are derived for the Galileo constellation (denoted as 𝐸) 

such that : 

𝑃𝐸 = 𝛼1,𝐸  𝑃𝐸1
𝐸 + 𝛼2,𝐸  𝑃𝐸5𝑎

𝐸 + 𝛼3,𝐸  𝑃𝐸5𝑏
𝐸 = ρ𝐸 + 𝑐𝑑𝑡𝐺 + 𝐼𝑆𝐵𝐺−𝐸 +𝑚𝑤

𝐸  𝑍𝑊𝐷 + 𝜀𝑃
E  (7) 

𝜙𝐸 = 𝛼1,𝐸  𝜙𝐸1
𝐸 + 𝛼2,𝐸  𝜙𝐸5𝑎

𝐸 + 𝛼3,𝐸  𝜙𝐸5𝑏
𝐸 = ρ𝐸 + 𝑐𝑑𝑡𝐺 + 𝐼𝑆𝐵𝐺−𝐶 + 𝜆𝐸𝑁

∗𝐸 +𝑚𝑤
𝐸  𝑍𝑊𝐷 + 𝜀𝜙

𝐸   

 (8) 

with coefficients 𝛼1,𝐸 = 2.314 925, 𝛼2,𝐸 = −0.836 269, and 𝛼3,𝐸 = −0.478 656.  
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If we consider the case of a GNSS receiver tracking 1 to 𝑛 GPS satellites, 1 to 𝑚 Beidou 

satellites, and 1 to 𝑘 Galileo satellites at an instant of time, the unknown parameters for a 

float PPP approach would be:  

𝒙 = [𝑥 𝑦 𝑧 𝑐𝑑𝑡𝐺 𝐼𝑆𝐵𝐺−𝐶 𝐼𝑆𝐵𝐺−𝐸 𝑚𝑤
𝑠𝑦𝑠

𝜆𝑠𝑦𝑠𝑁
∗(𝐺1, … , 𝐺𝑛; 𝐶1, … , 𝐶𝑚; 𝐸1, … , 𝐸𝑘)]         (9) 

where 𝑥, 𝑦, 𝑧 denotes the unknown receiver position. The functional and stochastic models of 

the above combinations are discussed in (Deo and El-Mowafy 2016). 

2.2 A Modified PPP Model Constraining the Troposphere 

In this section, constraining of the ZTD obtained from external sources as additional 

‘quasi’ observations in the PPP model is discussed. These ZTD values are estimated with 

associated uncertainties, for instance standard deviations. At the receiver, instead of treating 

the modelled ZTD as known values in the observation equations, they are added as ‘quasi’ 

observations with their uncertainty (precision). Thus, the observation vector of the code and 

phase observations and their covariance matrices (denoted as 𝑄𝑃 and 𝑄𝜙) are augmented to 

include an additional ‘quasi’ observation 𝑇̃ to constraint the vertical troposphere, which is 

computed from the troposphere models. The observation equation of this quasi-observation is 

expressed as: 

 

𝑇̃ =  𝑇 + 𝜀𝑇̃ (10) 

𝜀𝑇̃ is the noise in 𝑇̃.  Using GPS as an example, the linearized fault-free measurement model 

using all satellites in view is given as:  

 

y = H x + (11) 

 

where y and x are the vectors of observations and unknowns, respectively, H is the design 

matrix and denotes the noise. Combining the observation Equations (3), (4) and (11), the 

final system of observation equations for 𝑛 GPS satellites as an example is expressed as: 

 

(
𝑃(𝐼𝐹)𝐺

𝜙(𝐼𝐹)𝐺

𝑇̃

)

⏟      

𝑦

=
(
𝐺 𝑢 𝑚𝑤

𝐺     0      

𝐺
0

𝑢
0

𝑚𝑤
𝐺

1

𝜆𝐺 × I
0

)

⏟                

𝐻

(

𝑋𝑢
𝑐 𝑑𝑡̅̅̅(𝐼𝐹)𝐺

𝑇
𝑁∗𝐺(𝐼𝐹)

)

⏟        

𝑥

  + 𝜀        for 𝑠 =  1 to 𝑛 

 

 

(12) 

 

 

  

The design matrix H is full rank, where G is the geometry (direction-cosine) matrix computed 

from precise ephemeris with dimension 𝑛 × 3, 𝐼 is the identity matrix of dimension 𝑛, u is a 

unit vector of ones and 𝑚𝑤
𝐺  is a column vector representing the line-of-sight troposphere 

mapping function. The observation covariance matrix is expressed as 𝑄𝑦 = 𝑑𝑖𝑎𝑔 (𝑄𝑃(𝐼𝐹)𝐺,

𝑄𝜙(𝐼𝐹)𝐺 , 𝑄𝑇̃), for s = 1 to n. The sub-covariance matrices 𝑄𝑃(𝐼𝐹)𝐺 and 𝑄𝜙(𝐼𝐹)𝐺 are typically 

assumed diagonal for the observed satellites, with a priori values as shown in El-Mowafy 

(2015) weighted using an arbitrary satellite elevation-angle dependent model, and 

uncorrelated code and phase observations. 𝑄𝑇̃ is uncorrelated with  𝑄𝑃(𝐼𝐹)𝐺 and 𝑄𝜙(𝐼𝐹)𝐺, and 

is assumed diagonal with the standard deviation of the quasi-observation (𝜎𝑇̃) either assumed 

or estimated from external source.  
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3. Troposphere Modelling 

The tropospheric delay, 𝑇,  along a GNSS satellite elevation angle, 𝐸,  is modelled as 

(Böhm et al., 2006a): 

𝑇(𝐸) = 𝑚ℎ 𝑍𝐻𝐷 + 𝑚𝑤  𝑍𝑊𝐷 (13) 

where 𝑍𝐻𝐷, 𝑍𝑊𝐷 are the hydrostatic and wet delay components in zenith direction, and 𝑚ℎ, 

𝑚𝑤 are the hydrostatic and wet mapping functions, respectively. The zenith hydrostatic delay 

(ZHD) can be adequately calculated with the empirical models such as the Saastamoinen’s 

formula Saastamoinen (1972), given in Davis et al (1985) as: 

𝑍𝐻𝐷 = 𝑃 ×
0.0022768

1−0.00266𝑐𝑜𝑠(2𝜙)−0.28 × 10−6ℎ
 (14) 

where 𝑃 is the surface atmospheric pressure in hPa, 𝜙 is the station latitude in radians, and ℎ  

is the station orthometric or ellipsoid height in metres. The difference due to using either 

height system is negligible (IERS Conventions, 2010). The pressure can be computed from 

an empirical model, a numerical weather model (NWM) or with in-situ measurements at the 

observing location. 

The zenith wet delay (ZWD) can be approximately calculated if measurements of relative 

humidity (𝑅𝐻) and temperature are available at the observing station, for instance expressed 

as (Andrei and Chen, 2009):   

𝑍𝑊𝐷 =  0.002277(
1255

𝑡
+  0.05) 𝑒 (15) 

where 𝑡 is the temperature in Kelvin and 𝑒 is the partial water vapour pressure, which can be 

calculated from the 𝑅𝐻 measurements as 

𝑒 = 6.108 
𝑅𝐻

100
∙  𝑒(

17.15𝑡 − 4684

 𝑡 − 38.45
)
 (16) 

Hence, the surface temperature and either the relative humidity or partial water vapour 

pressure measurements are required to calculate approximate ZWD. However, an accurate 

estimation of ZWD would require knowing the water vapour content along the whole length 

of the troposphere layer, using for instance water vapour radiometers. Since these expensive 

instruments are not available for normal users, the ZWD parameter is usually estimated as an 

unknown parameter in the standard PPP model, whereas the ZHD component is modelled 

with Eq. 14 with a hydrostatic mapping function. 

The next sections describe some of the options for modelling the troposphere delay using 

empirical models and NWMs. 

3.1 GPT Model and its revisions 

The Global Pressure Temperature (GPT) empirical model (Böhm, et al., 2007) and its 

revisions GPT2 (Lagler et al., 2013) followed by GPT2w (Böhm et al., 2015) may be used to 

determine the required parameters for calculating the troposphere delay. Although GPT 

enables calculation of the pressure value in Eq. 14, it is inadequate for precise positioning 

applications where precise heights are required. Kouba (2009) reported height errors in the 

standard PPP solution of 0.10m or more when satellites below 10⁰ are included and only the 

ZHD is modelled. GPT2 was introduced as a refinement of GPT, which enables calculation 

of pressure, temperature, temperature lapse rate, partial water vapour, as well as the 

hydrostatic and wet coefficients, defined as 𝑎ℎ and 𝑎𝑤, that are required by the Vienna 

Mapping Function (VMF1) (Böhm et al., 2006a). This enables users to apply the more 

precise VMF1, compared to other functions such as the Global Mapping Function (GMF) 

(Böhm et al., 2006b). Application of VMF1 requires use of the coefficients 𝑎ℎ and 𝑎𝑤 for 
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calculating 𝑚ℎ and 𝑚𝑤, respectively, which are subsequently used to calculate 𝑍𝑊𝐷 and 

𝑍𝐻𝐷 values using Eq. 13.  

The GPT2w model is an extension of GPT2, with improved capability to determine the ZWD 

empirically (Böhm et al., 2015). This was validated with the zenith total delay (𝑍𝑇𝐷 =
 𝑍𝐻𝐷 +  𝑍𝑊𝐷) estimates from the IGS precise ZTD products at 341 GNSS sites over 110 

days (Böhm et al., 2015). The difference between the GPT2w derived ZTD and the IGS 

determined delays ranged between -0.042m and +0.073m, with a mean difference of -

0.0002m and RMS of 0.036m. The GPT2w requires gridded raw data with regular intervals 

of either 5⁰ or the higher 1⁰ resolution, along with the station location, height and date as 

input parameters. The model interpolates the pressure, temperature, temperature lapse rate, 

mean temperature of water vapour, water vapour pressure, water vapour lapse rate, geoid 

undulation and the coefficients for the hydrostatic and wet mapping functions for a given 

location and date. The ZHD can be calculated using Eq. 14 whereas the ZWD is expressed as 

(Askne and Nordius, 1987): 

𝑍𝑊𝐷 = 10−6(𝑘2
′ + 𝑘3/𝑡𝑚)

𝑅𝑑

(𝜆+1)𝑔
𝑒𝑠 (17) 

where 𝑘2
′  and 𝑘3 are empirically determined coefficients, 𝑅𝑑 denotes the specific gas constant 

for the dry constituents and 𝑔 is the gravity constant. The variable 𝑒𝑠 is the water vapour 

pressure at the site, 𝜆 is the water vapour lapse rate, 𝑡𝑚 is the mean temperature of the water 

vapour in degrees Kelvin. All these values can be computed from the GPT2w model (Böhm 

et al., 2015). The hydrostatic and wet mapping functions are calculated with VMF1 using the 

respective coefficients, 𝑎ℎ and 𝑎𝑤, and the total tropospheric delay is finally calculated by 

using Eq. 13. 

3.2 Numerical Weather Models 

To achieve mm accuracy in station height, ZHD must be known to better than 0.01m 

accuracy. This requires pressure values with better than 5hPa accuracy from in-situ 

measurements at the station, or NWM data (Kouba, 2009). Such accuracy is achievable from 

the Global Data Assimilation System (GDAS), produced at 1⁰ x 1⁰ grid in real time by the 

National Center for Environment Prediction (NCEP) of the US National Oceanic and 

Atmospheric Administration (NOAA). The ZWD may also be modelled using relative 

humidity or partial water pressure values from NWMs. Andrei and Chen (2009) used GDAS 

data for computing both the hydrostatic and wet zenith delay, which agreed to IGS total 

zenith delay to within 0.05m.  In their study, the agreement between GDAS meteorological 

values and in-situ direct measurements at selected IGS stations was 1 mbar in pressure, 3 

degrees Celsius for temperature and 13% for relative humidity. Most of the error was 

attributed to the poor quality of relative humidity and temperate values from GDAS, which 

resulted in less accurate estimation of ZWD.  

Although NWMs can provide 0.05m level ZTD estimates, their implementation requires 

additional time and resources by the users to acquire data from external sources. An 

advantage of this approach is that it can be adopted for real-time PPP, even when there is data 

outage since the weather models forecast data for several hours into the future. The next sub-

sections describe two NWMs that have been used in this study. 
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3.2.1 ECMWF 

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces 

coefficients for calculation of ZWD and ZHD on a global grid of 2.0 ⁰ interval in north-south 

and 2.5 ⁰ in east-west. These coefficients are produced every 6 hours at 00, 06, 12 and 18 

UTC at http://ggosatm.hg.tuwien.ac.at. This website also provides the ZHD and ZWD values 

in metres, in these grid and time intervals. The ZHD and ZWD values are for ellipsoidal 

heights (ℎ𝐷𝐸𝑀), which is obtained from a digital elevation model (DEM), for instance 

available from the website http://ggosatm.hg.tuwien.ac.at/DELAY/GRID/orography_ell, with 

a grid resolution of 2.0⁰ for latitude and 2.5⁰ for longitude. The interpolation of 

𝑎ℎ , 𝑎𝑤 , 𝑍𝐻𝐷, 𝑍𝑊𝐷 and ℎ𝐷𝐸𝑀  at the required station latitude and longitude (𝜙, 𝜆) is performed 

using a bilinear model. 

Provided that the difference between ℎ𝐷𝐸𝑀and the station height ℎ is within 1km, the ZHD at 

the station, 𝑍𝐻𝐷ℎ, can be extrapolated using the formula (Steigenberger et al., 2009): 

𝑍𝐻𝐷ℎ = 𝑍𝐻𝐷ℎ𝐷𝐸𝑀 − 2.77 × 10
−3 𝑔∙𝑃(ℎ𝐷𝐸𝑀)

𝑅∙𝑡(ℎ𝐷𝐸𝑀)
(ℎ − ℎ𝐷𝐸𝑀) (18) 

where 𝑅 = 8.3144621 𝐽 ∙ 𝐾−1 ∙ 𝑚𝑜𝑙−1 is the molar gas constant and the height difference is 

in km units. The pressure 𝑃(ℎ𝐷𝐸𝑀) and temperature 𝑡(ℎ𝐷𝐸𝑀) at the station with the ℎ𝐷𝐸𝑀  

estimated at its location may be computed with the use of GPT2w model. 

3.2.2 Australian Bureau of Meteorology ACCESS data 

The Australian Community Climate and Earth-System Simulator (ACCESS) data is available 

from the Australian Bureau of Meteorology (BoM) as gridded binary (GRIB) edition 2 as 

well as Network Common Data Form-4 (NetCDF-4) formats. Further details of the different 

types of products and their accessibility is available at 

http://reg.bom.gov.au/nwp/doc/access/NWPData.shtml. The ACCESS-Regional (R) data 

contains meteorological data on three-dimensional grids in the greater Australian region, at a 

resolution of 12km. There are various versions of the data files, containing different 

combinations of parameters which may be deduced from the filenames.  

 

In this study, the ACCESS-R single level surface data was used. This product is released 

every six hours at UTC base hours 00, 06, 12 and 18, and for each base time, there are three 

files issued with forecast validity times of 3, 6 and 9 hours. This data was converted to 

netCDF-4 using the wgrib2 software (www.cpc.ncep.noaa.gov/products/wesley/wgrib2/) and 

decoded using an in-house software. The key useful fields in this file include the surface 

temperature in Kelvin, surface pressure in Pa and the relative humidity at 1.5m above ground. 

Hence, the ZWD can be calculated using Eqs. 15 and 16, and ZHD with Eq. 14, once the 

relative humidity, temperature and pressure values are interpolated at a given station location 

and time.  

3.3 Radio Occultation from COSMIC satellites 

The Constellation Observing System for Meteorology, Ionosphere and Climate 

(COSMIC) / Formosa Satellite 3 (FORMOSAT-3) constellation of six satellites were 

launched into a low-Earth orbit (LEO) in April 2006. Since then, its data has been 

successfully used in a wide range of scientific applications such as weather forecasting, 

ionosphere and the Earth’s gravity studies (Yue et al., 2010). The COSMIC/ FORMOSAT-3 

Radio Occultation (RO) data is available to users from the COSMIC Data Analysis and 

Archive Centre (CDAAC) at the University Corporation for Atmospheric Research (UCAR) 

http://ggosatm.hg.tuwien.ac.at/
http://ggosatm.hg.tuwien.ac.at/DELAY/GRID/orography_ell
http://reg.bom.gov.au/nwp/doc/access/NWPData.shtml
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
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website http://cdaac-www.cosmic.ucar.edu/cdaac/products.html for authorised users. The RO 

processed data comes in three types, namely (1) COSMIC2013: consisting of reprocessed 

data using enhanced processing strategies resulting in higher RO counts, (2) COSMIC post-

processed data with a typical latency of six weeks and (3) COSMICRT containing real-time 

data with a latency of a few hours. These data sets are available in the netCDF-4 format.  

The COSMIC2013 reprocessed data was considered in this study. Of the several versions of 

the available atmospheric profiles, the wetPrf product was used, which contains the profiles 

of temperature, water vapour pressure and refractivity at 0.1km intervals up to an altitude of 

40km. The data is not regularly gridded in latitude and longitude, but is rather limited to 

where the RO point occurred in relation to the COSMIC and GPS satellite line-of-sight. Once 

the water vapour pressure and temperature are interpolated at a given location and time, the 

ZWD may be calculated using Eq 15. One issue with the COSMIC RO data is that there is 

not enough spatial and temporal resolution to accurately interpolate the atmospheric variables 

at any given location and time, which makes the interpolation infeasible at some locations 

(Yue et al., 2010). Figure 1 shows the RO locations in the Australian region for one day of 

the COSMIC data on 8 December 2016, and Figure 2 shows the Pressure, water vapour 

pressure and temperature profiles for the 634 globally located RO points on the same day. As 

shown, only 39 RO points were observed in the Australian region during that day and there 

were less than ten points within the landmass. Thus this data could not be used in this study. 

However, this situation is likely to improve in the future as more COSMIC satellites are 

launched.  

 

Figure 1: Radio Occultation locations for 39 RO points in the Australian region from 

COSMIC data on 8 December 2016. 

 

 

Figure 2: Pressure, water vapour pressure and temperature profiles for the 634 globally 

located RO data points from COSMIC data on 8 December 2016. 

http://cdaac-www.cosmic.ucar.edu/cdaac/products.html
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4. Analysis of ZTD models 

In this section we analyse the performance of each of the presented troposphere 

models by comparing the estimated ZTD from employing these models with the values 

obtained from the precise IGS ZTD product at selected stations in Australia. The stations 

analysed are distributed over the Australian continent and include Hobart (HOB2), Alice 

Springs (ALIC), Yarragadee (YAR2) and Townsville (TOW2).  

Site Latitude 

(degrees) 

Longitude 

(degrees) 

Ellipsoidal 

Height (h) (m) 

Orthometric 

Height (H)  

Difference 

ℎ − 𝐻 (m) 

ALIC S 23.670 E 133.886 603.245 587.643 15.602 

HOB2 S 42.805 E 147.439 41.044 44.756 -3.712 

TOW2 S 19.269 E 147.056 88.109 29.474 58.635 

YAR2 S 29.047 E 115.347 241.289 266.528 25.239 

 shows the ITRF2008 geodetic coordinates (latitude, longitude and ellipsoid height) 

for these stations, extracted from the Asia Pacific Reference Frame (APREF) solution 

produced by Geoscience Australia for GPS week 1877. The Orthometric heights are also 

given, which were obtained from the Australian national geodetic database 

(www.ga.gov.au/ngrs). Since these stations are IGS reference stations, they have precise ZTD 

estimates available as an IGS product. These were used as reference values for comparison 

with results from the tested models. The analysis pertains to the full year from 1 January to 

31 December 2016. The GRIB2 data was only available for approximately seven months of 

this period, due to connection issues that result in data outages.  

Figures 3-6 show the time series of the ZHD and ZWD values from the GPT2 and GPT2w 

empirical models, and the ECMWF and BoM NWM data at ALIC, HOB2, TOW2 and YAR2 

respectively. As shown in the figures, the ZHD values from GPT2 and GPT2w have 

millimetre level agreement with each other at all four sites. However, the discrepancy 

between these and the ECMWF model was at the 0.02-0.04m level at YAR2 and up to 0.10m 

at TOW2. Note that the ECMWF ZHD values are based on ellipsoidal heights on a low 

resolution DEM. Thus this observed discrepancy may be attributed to the low resolution of 

DEM and the accuracy of geoid-ellipsoid undulation model at this location. The ZHD from 

BoM data is in agreement with the GPT2/ GPT2w models at the 0.01-0.02m level. The IGS 

ZWD in these figures is calculated by subtracting the ZHD determined from GPT2w from the 

IGS ZTD. Overall, the mean and standard deviations (std) of the difference between the 

modelled ZWD and the IGS ZWD were mean=0.031m, std=0.065m, for BoM; mean=-

0.061m, std=0.076m for ECMWF; mean=-0.048m, std=0.115m for GPT2; mean=-0.039m, 

std=0.105m for GPT2w. Thus, the BoM derived ZWD was the most accurate and precise at 

these four tested sites. 

 

Table 1: ITRF08 Geographical coordinates of the test points from APREF solution for week 

1877 and Orthometric height from the Australian national geodetic database.  

Site Latitude 

(degrees) 

Longitude 

(degrees) 

Ellipsoidal 

Height (h) (m) 

Orthometric 

Height (H)  

Difference 

ℎ − 𝐻 (m) 

ALIC S 23.670 E 133.886 603.245 587.643 15.602 

HOB2 S 42.805 E 147.439 41.044 44.756 -3.712 

TOW2 S 19.269 E 147.056 88.109 29.474 58.635 

YAR2 S 29.047 E 115.347 241.289 266.528 25.239 

 

http://www.ga.gov.au/ngrs
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Figure 3: Time series of the ZHD and ZWD from the GPT2 and GPT2w empirical models, 

and ECMWF and BoM numerical weather model data for one year at ALIC site. 
 

 
Figure 4: Time series of the ZHD and ZWD from the GPT2 and GPT2w empirical models, 

and ECMWF and BoM numerical weather model data for one year at HOB2 site.  

 

 
Figure 5: Time series of the ZHD and ZWD from the GPT2 and GPT2w empirical models, 

and ECMWF and BoM numerical weather model for one year data at TOW2 site.  
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Figure 6: Time series of the ZHD and ZWD from the GPT2 and GPT2w empirical models, 

and ECMWF and BoM numerical weather model data for one year at YAR2 site. 

 

From Figures 3-6, it is apparent that there are seasonal patterns for the troposphere accuracy 

for the different models at the four selected sites. We extracted monthly mean relative 

humidity and rainfall data from the BoM website (http://www.bom.gov.au/climate/data/) to 

gain more insight into these patterns. The data was extracted from weather stations located at 

local airports close to the GNSS stations, where Miorawa Airport was the closest to YAR2, 

Alice Springs Airport was the closest to ALIC, Townsville Aero was closest to TOW2 and 

Hobart Airport was closest to HOB2. As shown in Figure 7, the rainfall and relative humidity 

profiles differ considerably at these four sites because of their geographic locations and 

unique weather patterns. It is known from a previous study by Zhou et al. (2017) that the 

accuracy of NWM decreases in some areas due complex weather changes. 
 

For TOW2, the offset in ZTD determined from BoM and IGS is more visible in the 

ZWD component. The ZWD at this site is comparatively noisier with a range of 0.4m, which 

indicates greater variability in the atmospheric moisture profiles. This may be because TOW2 

is in a tropical zone close to the coast, where there is increased relative humidity throughout 

the year, as shown in Figure 7. At ALIC, the ZWD from BoM NWM is in good agreement 

with the IGS ZWD, but the overall standard deviation for ZTD is relatively higher at 0.043m. 

The ZWD profile at ALIC shows more variation during the Northern Territory wet season, 

which spans from November until April, and is characterised by increased rain and storms. 

The impact of the wet season during this period is visible in Figure 3. Despite the higher rain 

during this period, the relative humidity is low due to the increased temperatures in the 

warmer summer months. At HOB2, Figure 4 shows close agreement between the BoM NWM 

and IGS in the ZHD as well as ZWD components. This site has comparatively lesser 

variation in the ZWD profile, which may be due to the comparatively lesser variation in 

rainfall and relative humidity throughout the year. The YAR2 site also has lesser variation in 

the ZWD for most part of the year, except for Mar to May as shown in Figure 7. This site has 

higher rainfall from May to September, which correlates with the increased relative humidity. 

The increased ZWD variability may be due to the complex change from dry to wet season 

between Mar to May. 

http://www.bom.gov.au/climate/data/
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Figure 7: Mean monthly relative humidity (left) and rainfall (right) data at the four selected 

sites, extracted from the BoM website (http://www.bom.gov.au/climate/data/). 

The ZTD from these models were compared to the IGS ZTD product available for these 

stations. Figures 8-11 show histograms of the difference between the ZTD obtained from IGS 

and those calculated as the sum of ZHD and ZWD from the GPT2 and GPT2w empirical 

models, and ECMWF and BoM NWM data. As shown, the agreement of ZTD between IGS 

and NWMs is better than the empirical models and 95% of the differences are within the 

range ±0.2m, with the majority within ±0.1m. The mean and standard deviations (std) of 

these differences are also summarised in Table 2 for the four sites. As shown, the precisions 

of the ZTD from NWM datasets, represented by the standard deviations, are consistently 

better than the GPT2 and GPT2w empirical models at the four sites. The GPT2w model gave 

more accurate ZTD values compared to GPT2, with a slight improvement in precision at the 

mm level. The ZTD from ECMWF model gave precise results at ALIC (mean=0.007m, 

std=0.018m) and HOB2 (mean=0.006m, std=0.026m), both of which have low discrepancy 

between ellipsoid and orthometric height. However, results were poor at TOW2 and YAR2 

due to the low resolution of DEM used in the ECMWF model, as discussed earlier. The ZTD 

from BoM data gave consistent results at all four sites with mean errors between -0.034m and 

0.029m and standard deviations better than 0.045m. Overall, use of BoM NWM data gave 

more precise and accurate ZTD values than any other of the tested models. The next section 

analyses the PPP performance when constraining the ZTD with the BoM NWM, the proven 

best model. 

Table 2: Mean and standard deviation (std) of the difference between the IGS ZTD and 

modelled ZTDs from GPT2, GPT2w, ECMWF and BoM.  

Site 𝑍𝑇𝐷𝐼𝐺𝑆
− 𝑍𝑇𝐷𝐺𝑃𝑇2 

𝑍𝑇𝐷𝐼𝐺𝑆
− 𝑍𝑇𝐷𝐺𝑃𝑇2𝑤 

𝑍𝑇𝐷𝐼𝐺𝑆
− 𝑍𝑇𝐷𝐸𝐶𝑀𝑊𝐹  

𝑍𝑇𝐷𝐼𝐺𝑆 − 𝑍𝑇𝐷𝐵𝑜𝑚 

Mean(m) Std. 

(m) 

Mean(m) Std. 

(m) 

Mean(m) Std. 

(m) 

Mean(m) Std. 

(m) 

ALIC 0.048 0.064 0.025 0.062 0.007 0.018 0.029 0.043 

HOB2 -0.002 0.039 0.000 0.038 0.006 0.026 0.001 0.023 

TOW2 0.030 0.061 0.023 0.062 0.145 0.029 -0.026 0.043 

YAR2 -0.014 0.043 0.004 0.042 -0.035 0.027 -0.034 0.028 
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Figure 8: Histograms of the difference between IGS ZTD and model ZTDs from GPT2, 

GPT2w, ECMWF and BoM, from left to right, at station ALIC. 

 

 
Figure 9: Histograms of the difference between IGS ZTD and model ZTDs from GPT2, 

GPT2w, ECMWF and BoM, from left to right, at station HOB2. 

 

 
Figure 10: Histograms of the difference between IGS ZTD and model ZTDs from GPT2, 

GPT2w, ECMWF and BoM, from left to right, at station TOW2. 
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Figure 11: Histograms of the difference between IGS ZTD and model ZTDs from GPT2, 

GPT2w, ECMWF and BoM, from left to right, at station YAR2. 

5. PPP Performance Analysis with the BoM NWM Tropospheric Model 

This section analyses the performance of PPP in terms of the convergence time taken 

to achieve sub-decimetre positioning errors, and the accuracy after convergence is achieved. 

The PPP model with and without the ZTD aiding was implemented using Kalman filter; i.e. 

processing the data by constraining the ZTD from BoM NWM model and the stds given in 

the last column of Table 2, and next processing the same data in the conventional method by 

estimating ZTD as one of the parameters. In both cases, a satellite elevation cut-off angle of 

10⁰ was used. The triple frequency low noise and ionosphere free linear combinations for 

carrier phase and code measurements were used when constraining the ZTD using the BoM 

NWM, and in the conventional case of estimating it as a parameter. In the conventional 

method, the ZHD was modelled with Eq. 14 with the Neill’s hydrostatic mapping function 

(Neil, 1996), whereas the ZWD was determined as an unknown parameter.  

5.1 PPP Results 

Results are compared in terms of solution convergence time taken to achieve sub-

decimetre accuracy in the horizontal dimension (2D), including North (N) and East (E) 

position components, as well as the vertical dimension. The 2D convergence time is defined 

as the time when horizontal positional accuracy of 0.10m is reached and maintained 

thereafter, indicating stability of the float ambiguity solution. Likewise, the N, E and vertical 

convergence time defines when sub-decimetre accuracy is achieved in N, E and vertical 

components, respectively. The accuracy is defined in terms of the root mean squared error 

(RMSE) of the estimated positions after convergence is achieved with respect to the known 

station coordinates obtained from the APREF solution. The results from constraining the 

troposphere with the BoM NWM is compared to the case where the troposphere is estimated 

as an unknown parameter. Appropriate weighting was applied to the BoM NWM derived 

ZTD values, based on the analysis in the previous section. In addition, we applied a constraint 

based on the real accuracy of the ZTD determined from the long term analysis. This 

constrained PPP model accounts for the imperfections in the ZTD derived from the BoM 

NWM model, mainly due to limitations in accurately modelling complex weather changes. 

The study was conducted with simulated multi-constellation triple frequency GNSS data with 

32 GPS, 17 Galileo and 14 Beidou satellites at the sites ALIC, HOB2, TOW2 and YAR2, 

with 30 sec epoch interval and 5 day’s of data from 3-7 June 2016.  
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For demonstration, the proposed model was firstly assessed for HOB2 assuming a totally 

known troposphere delay (i.e., troposphere with zero error). Although this is not feasible in 

practice, it demonstrates the ultimate benefits of modelling out the troposphere if it is 

accurately known. Estimating the troposphere as an unknown parameter in the PPP model 

resulted in a convergence time of 6.0 minutes to reach a 2D accuracy of 0.10m, and a 

convergence time of 12.5 minutes to reach a 2D accuracy of 0.05m. When the troposphere is 

exactly known from the IGS ZTD model, the convergence time to reach 2D accuracy of 

0.10m was 5.5min, and a 2D accuracy of 0.05m was reached after 11.5 minutes. A satellite 

elevation cut-off angle of 10 degrees was used in both cases. Therefore, modest 

improvements in convergence time of 0.5 and 1 minute was achieved to reach 0.1m and 

0.05m accuracy, respectively. These convergence times may appear over optimistic, noting 

that simulated data was used, which did not include multipath. Moreover, the enhanced triple 

frequency model was implemented, which has significantly better performance than the 

traditional dual-frequency model (Deo and El-Mowafy, 2016).  

For the case of using the BoM NWM to constrain the ZTD, Table 3 shows the convergence 

time required to achieve 0.1m and 0.05m accuracy in 2D, N, E and vertical components 

compared with the case of estimating the troposphere as a parameter. As the table shows, the 

results practically did not change. There was however a slight improvement by 0.5 minutes in 

the BoM constrained model to reach 0.1m vertical accuracy at HOB2 and at TOW2 to reach 

0.05m accuracy. In terms of the accuracy achieved after convergence, Table 4 compares the 

RMSE in the 2D, N, E and vertical components after convergence of the PPP solutions to 

reach 0.1m and 0.05m at the four sites. As the table shows, there are slight improvements 

found at the millimetre level at ALIC, HOB2 and YAR2, the results are unchanged at TOW2.  

Table 3: Convergence time taken to reach accuracy of 0.1 m and 0.05 m (2D, North, East and 

Vertical) for the PPP model with troposphere estimation, and when using BoM NWM 

constrained troposphere. 
Site Troposphere Model Average 

number of 

satellites 

Convergence time to reach 

0.1m (min) 

Convergence time to reach 

0.05m accuracy (min) 

2D N E Vert. 2D N E Vert. 

ALIC ZTD Estimated 20 6.5 4.0 4.0 15.5 22.0 7.5 12.0 32.0 

BoM Constrained 20 6.5 4.0 4.0 15.5 22.0 7.5 12.0 32.0 

HOB2 ZTD Estimated 18 6.5 3.5 4.0 12.5 20.0 8.0 11.5 24.0 

BoM Constrained 18 6.5 3.5 4.0 12.0 20.0 8.0 11.5 24.0 

TOW2 ZTD Estimated 20 7.0 3.0 5.0 13.5 21.5 6.5 15.0 28.0 

BoM Constrained 20 7.0 3.0 5.0 13.5 21.5 6.5 15.0 27.5 

YAR2 ZTD Estimated 21 7.0 4.0 4.0 13.5 16.5 8.5 11.0 26.5 

BoM Constrained 21 7.0 4.0 4.0 13.5 16.5 8.5 11.0 26.5 

Table 4: RMSE after convergence to 0.1m and 0.05m accuracy (2D and Vertical) for the PPP 

model with troposphere estimation & when using BoM NWM constrained troposphere. 

Site Troposphere Model Mean RMSE after 0.1m 

convergence (m) 

Mean RMSE after 0.05m 

convergence (m) 

2D N E Vert. 2D N E Vert. 

ALIC ZTD Estimated 0.045 0.024 0.039 0.047 0.037 0.021 0.033 0.034 

BoM Constrained 0.045 0.023 0.038 0.046 0.037 0.020 0.033 0.034 

HOB2 ZTD Estimated 0.045 0.025 0.036 0.043 0.038 0.021 0.032 0.035 

BoM Constrained 0.045 0.024 0.036 0.042 0.037 0.020 0.032 0.034 

TOW2 ZTD Estimated 0.043 0.021 0.038 0.043 0.034 0.018 0.031 0.031 

 BoM Constrained 0.043 0.021 0.038 0.043 0.034 0.018 0.031 0.031 

YAR2 ZTD Estimated 0.040 0.024 0.032 0.044 0.034 0.021 0.027 0.034 

 BoM Constrained 0.040 0.024 0.032 0.044 0.034 0.020 0.027 0.034 
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Figure 12: Comparison of PPP positioning errors in 2D and absolute values in North, East 

and Vertical components for the triple frequency PPP model when estimating the troposphere 

as a parameter and constraining the troposphere using BoM GRIB2 data at ALIC (left) and 

HOB2 (right). 

The mean positioning errors of the hourly PPP solutions for the five days were computed 

after convergence periods of 2, 3, 5, 10 and 20 minutes after the PPP initialisation times. This 

was done for the 2D, N, E and vertical components at the four sites. Results are given in 

Table 5. One of the key findings from this table is that the accuracy of the BoM constrained 

troposphere model achieved faster convergence in the vertical component for the first few 

minutes of convergence, compared to the PPP model which estimated the troposphere as a 

parameter. The BoM constrained troposphere model PPP had better vertical accuracy than the 

former model by 0.036-0.058m after 2 minutes, 0.023-0.038m after 3 minutes and 0.013-

0.020m after 5 minutes of PPP initialisation. After 6-7 minutes of convergence, both models 

performed at similar level of accuracy at all the four sites.  
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Figure 13: Comparison of PPP positioning errors in 2D and absolute values in North, East 

and Vertical components for the triple frequency PPP model when estimating the troposphere 

as a parameter and constraining the troposphere using BoM GRIB2 data at TOW2 (left) and 

YAR2 (right). 

Table 5: Mean positioning errors in 2D, North, East and Vertical components after PPP 

initialisation times of 2, 3, 5, 10 and 20 minutes for the PPP model with tropospheric 

estimation and the PPP model with BoM NWM constrained troposphere.  
Troposphere Model Estimated parameter  BoM Constrained (diff) 

Time since PPP 

initialisation 

2 min 3 min 5 min 10 min 20 min 2 min 3 min 5 min 10 min 20 min 

HOB2 

Mean 

RMSE 

(m) 

2D  0.289 0.194 0.124 0.073 0.049 0.289 

(0.000) 

0.192 

(-0.002) 

0.124 

(0.000) 

0.074 

(+0.001) 

0.049 

(0.000) 

N  0.193 0.112 0.073 0.038 0.025 0.195 

(+0.002) 

0.112 

(0.000) 

0.072 

(-0.001) 

0.040 

(+0.002) 

0.026 

(+0.001) 

E  0.179 0.133 0.085 0.052 0.035 0.179 

(0.000) 

0.133 

(0.000) 

0.085 

(0.000) 

0.052 

(0.000) 

0.036 

(+0.001) 

Vert.  0.386 0.289 0.205 0.115 0.059 0.346 

(-0.040) 

0.255 

(-0.034) 

0.185 

(-0.020) 

0.114 

(-0.001) 

0.058 

(-0.001) 

YAR2 

Mean 

RMSE 

(m) 

2D  0.241 0.175 0.119 0.073 0.043 0.241 

(0.000) 

0.176 

(+0.001) 

0.119 

(0.000) 

0.074 

(+0.001) 

0.043 

(0.000) 

N  0.158 0.113 0.069 0.042 0.024 0.158 

(0.000) 

0.114 

(+0.001) 

0.070 

(+0.001) 

0.042 

(0.000) 

0.024 

(0.000) 

E  0.149 0.110 0.081 0.051 0.030 0.149 

(0.000) 

0.110 

(0.000) 

0.081 

(0.000) 

0.052 

(+0.001) 

0.030 

(0.000) 

Vert.  0.450 0.352 0.239 0.126 0.065 0.411 

(-0.039) 

0.320 

(-0.032) 

0.223 

(-0.016) 

0.130 

(+0.004) 

0.064 

(-0.001) 

ALIC 

Mean 

RMSE 

(m) 

2D  0.255 0.187 0.123 0.079 0.050 0.255 

(0.000) 

0.186 

(-0.001) 

0.123 

(0.000) 

0.079 

(0.000) 

0.050 

(0.000) 

N  0.162 0.118 0.072 0.040 0.025 0.162 

(0.000) 

0.118 

(0.000) 

0.072 

(0.000) 

0.040 

(0.000) 

0.025 

(0.000) 

E  0.164 0.122 0.084 0.060 0.040 0.164 

(0.000) 

0.121 

(-0.001) 

0.084 

(0.000) 

0.059 

(-0.001) 

0.040 

(0.000) 

Vert.  0.455 0.408 0.295 0.152 0.075 0.397 

(-0.058) 

0.370 

(-0.038) 

0.282 

(-0.013) 

0.153 

(+0.001) 

0.074 

(+0.001) 
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TOW2 

Mean 

RMSE 

(m) 

2D  0.250 0.187 0.126 0.076 0.051 0.249 

(-0.001) 

0.186 

(-0.001) 

0.125 

(-0.001) 

0.075 

(-0.001) 

0.051 

(0.000) 

N  0.131 0.099 0.062 0.034 0.023 0.131 

(0.000) 

0.099 

(0.000) 

0.061 

(-0.001) 

0.034 

(0.000) 

0.023 

(0.000) 

E  0.182 0.140 0.097 0.060 0.042 0.182 

(0.000) 

0.139 

(-0.001) 

0.097 

(0.000) 

0.061 

(-0.001) 

0.042 

(0.000) 

Vert.  0.496 0.368 0.247 0.128 0.067 0.460 

(-0.036) 

0.345 

(-0.023) 

0.232 

(-0.015) 

0.131 

(+0.003) 

0.068 

(+0.001) 

 

6. Conclusions 

This paper firstly compared the tropospheric models obtained from 1) GPT2, 2) 

GPT2w, 3) ECMWF gridded data, and 4) BoM GRIB2. An inter-comparison of these models 

with the IGS ZTD product used as a reference showed that the precision of the ZTD from 

actual NWM datasets (BoM and ECMWF) were consistently better than the empirical models 

(GPT2 and GPT2w). The GPT2w model was more precise and accurate than its predecessor 

GPT2. The ZTD from ECMWF model at IGS station ALIC gave a mean error=0.007m and 

std=0.018m, and station HOB2 gave mean=0.006m and std=0.026m. However, results were 

poor at stations TOW2 and YAR2, which is likely to be due to the low resolution of DEM 

heights used in this model. The ZTD from BoM NWM data gave the best precision and 

accuracy at all four sites, with mean errors between -0.034m to 0.029m and standard 

deviations better than 0.045m. 

The BoM NWM data was used to constraint the tropospheric delay in PPP processing 

at the four sites with 5 days data with hourly PPP solutions. The performance of PPP 

convergence time and achievable accuracy with the BoM NWM constrained troposphere was 

compared to the traditional case where the troposphere is estimated as an unknown 

parameter. Improvements in vertical positioning accuracy was found at all the four sites 

during the first few minutes of initialisation. The BoM constrained troposphere model PPP 

had better vertical accuracy by 0.036-0.058m after 2 minutes, 0.023-0.038m after 3 minutes 

and 0.013-0.020m after 5 minutes of PPP initialisation. This result suggests that constraining 

the troposphere with the BoM NWM data in PPP has some merit in improving the vertical 

convergence during the first few minutes of initialisation and is beneficial for applications 

where fast vertical convergence is required. This could be a cost-effective means of 

improving the PPP vertical convergence using existing NWM data, rather than the more 

expensive approach of using precise troposphere corrections provided by an external provider 

using a local GNSS network. 
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