Triple-frequency GNSS models for PPP with float ambiguity estimation: performance comparison using GPS

Abstract

This contribution proposes two new precise point positioning (PPP) models that use triple-frequency data, designed to accelerate convergence of carrier-phase float ambiguities. The first model uses a triple-frequency ionosphere-free linear combination that has minimum noise propagation and geometry-preserving properties. The second model uses a mixed code and carrier-phase linear combination with the same properties. A third model was also implemented, which uses individual uncombined triple-frequency measurements. The three models were validated using triple-frequency GPS data and their performance was compared to the traditional dual-frequency model in terms of the convergence time taken to achieve and maintain a uniform three-dimensional accuracy of 5 cm. Testing includes PPP processing of 1-h measurement blocks using 1–8 days of data from three locations in Australia. It was shown that all the three triple-frequency models had improved solution convergence time compared to the traditional PPP dual-frequency model although they gave almost similar accuracy and precision. The convergence time, when using the triple-frequency ionosphere-free model improved, by 10%, the improvement was 9% when using the mixed code-phase model, whereas the individual uncombined model resulted in 8% improvement

    Similar works