9 research outputs found

    The embryonic node behaves as an instructive stem cell niche for axial elongation

    Get PDF
    In warm-blooded vertebrate embryos (mammals and birds), the axial tissues of the body form from a growth zone at the tail end, Hensen’s node, which generates neural, mesodermal, and endodermal structures along the midline. While most cells only pass through this region, the node has been suggested to contain a small population of resident stem cells. However, it is unknown whether the rest of the node constitutes an instructive niche that specifies this self-renewal behavior. Here, we use heterotopic transplantation of groups and single cells and show that cells not destined to enter the node can become resident and self-renew. Long-term resident cells are restricted to the posterior part of the node and single-cell RNA-sequencing reveals that the majority of these resident cells preferentially express G2/M phase cell-cycle–related genes. These results provide strong evidence that the node functions as a niche to maintain self-renewal of axial progenitors

    Bridging the N-terminal and middle domains in FliG of the flagellar rotor

    Get PDF
    Flagella are necessary for bacterial movement and contribute to various aspects of virulence. They are complex cylindrical structures built of multiple molecular rings with self-assembly properties. The flagellar rotor is composed of the MS-ring and the C-ring. The FliG protein of the C-ring is central to flagellar assembly and function due to its roles in linking the C-ring with the MS-ring and in torque transmission from stator to rotor. No high-resolution structure of an assembled C-ring has been resolved to date, and the conformation adopted by FliG within the ring is unclear due to variations in available crystallographic data. Here, we use molecular dynamics (MD) simulations to study the conformation and dynamics of FliG in different states of assembly, including both in physiologically relevant and crystallographic lattice environments. We conclude that the linker between the FliG N-terminal and middle domain likely adopts an extended helical conformation in vivo, in contrast with the contracted conformation observed in some previous X-ray studies. We further support our findings with integrative model building of full-length FliG and a FliG ring model that is compatible with cryo-electron tomography (cryo-ET) and electron microscopy (EM) densities of the C-ring. Collectively, our study contributes to a better mechanistic understanding of the flagellar rotor assembly and its function

    Integrated single-cell RNA sequencing analysis reveals alterations of ageing human lung endothelium heterogeneity in idiopathic pulmonary fibrosis

    No full text
    Increasing age is the main risk factor for chronic lung diseases (CLD) including idiopathic pulmonary fibrosis (IPF). Halting or reversing progression of IPF remains an unmet clinical need due to limited knowledge of underlying mechanisms. In particular, the contribution of the endothelium to ageing in human lung under physiological conditions and in IPF remains insufficiently understood. In this study, we analysed heterogeneity of endothelium in physiologically ageing human lung and its alterations in IPF. We conducted a comprehensive in silico analysis of scRNAseq profiles of human lung tissues from older healthy donors and age-matched IPF patients (n=9 for each group) by integrating datasets from two independent cohorts. We generated a single-cell map of the ageing human lung and identified 17 subpopulations of ageing endothelium (12 for blood and 5 for lymphatic vessels, including 4 “de-differentiated”), with distinct transcriptional profiles, specific gene expression signatures and percentage contributions, revealing previously underappreciated extent of heterogeneity. In IPF lung, the balance of different endothelial sub-types was significantly altered both in terms of cell numbers and gene expression patterns, identifying disease-relevant subpopulations and transcriptional changes associated with specific signalling pathways and cellular processes. These findings reveal a previously unrecognised phenomenon of ageing human lung endothelium re-programming towards an “IPF endothelium” state, suggesting potential avenues for therapeutic management or biomarker discovery for diagnostics or prognostics of IPF. Our study creates a conceptual framework for appreciating the heterogeneity of ageing endothelium and its alterations in CLDs and diseases associated with fibrosis in other organs, including lymphoedema and cancer

    The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization

    No full text
    Abstract During preimplantation development, contractile forces generated at the apical cortex segregate cells into inner and outer positions of the embryo, establishing the inner cell mass (ICM) and trophectoderm. To which extent these forces influence ICM-trophectoderm fate remains unresolved. Here, we found that the nuclear lamina is coupled to the cortex via an F-actin meshwork in mouse and human embryos. Actomyosin contractility increases during development, upregulating Lamin-A levels, but upon internalization cells lose their apical cortex and downregulate Lamin-A. Low Lamin-A shifts the localization of actin nucleators from nucleus to cytoplasm increasing cytoplasmic F-actin abundance. This results in stabilization of Amot, Yap phosphorylation and acquisition of ICM over trophectoderm fate. By contrast, in outer cells, Lamin-A levels increase with contractility. This prevents Yap phosphorylation enabling Cdx2 to specify the trophectoderm. Thus, forces transmitted to the nuclear lamina control actin organization to differentially regulate the factors specifying lineage identity

    Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity

    No full text
    Abstract Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin

    Regulation of long-range BMP gradients and embryonic polarity by propagation of local calcium-firing activity.

    No full text
    Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin
    corecore