19 research outputs found

    SF-36 includes less Parkinson Disease (PD)-targeted content but is more responsive to change than two PD-targeted health-related quality of life measures

    Get PDF
    To compare validity including responsiveness, and internal consistency reliability and scaling assumptions of a generic (SF-36) and Parkinson Disease (PD)-targeted (PDQ-39; PDQUALIF) health-related quality of life (HRQOL) measures. Ninety-six PD patients were administered for all HRQOL measures by telephonic interview at baseline and 18 months. Relative efficiency and responsiveness were compared relative to four external criteria (self-ratings of PD’s daily effects, global Quality of Life, PD symptom severity, and a depression screener). We examined whether PD-targeted measures explained unique variance beyond the SF-36 by regressing criterion variables on HRQOL scales/items. Adequacy of PD-targeted measures’ original scaling was explored by item-scale correlations. Relative efficiency estimates were similar for generic and PD-targeted measures across all criteria. Responsiveness analyses showed that the SF-36 yielded large (>0.8) effect sizes (ES) for three of eight scales for each of two criterion variables, compared to only one large ES for any scale in either PD-targeted measure. Adjusted R 2 increased from 14 to 27% in regression models that included PD-targeted items compared to models with only SF-36 scales. Item-scale correlations showed significant cross-loading of items across scales of the PD-targeted measures. SF-36 responsiveness was better than that of two PD-targeted measures, yet those measures had content that significantly explains PD patients’ HRQOL

    Physical inactivity in Parkinson’s disease

    Get PDF
    Patients with Parkinson’s disease (PD) are likely to become physically inactive, because of their motor, mental, and emotional symptoms. However, specific studies on physical activity in PD are scarce, and results are conflicting. Here, we quantified daily physical activities in a large cohort of PD patients and another large cohort of matched controls. Moreover, we investigated the influence of disease-related factors on daily physical activities in PD patients. Daily physical activity data of PD patients (n = 699) were collected in the ParkinsonNet trial and of controls (n = 1,959) in the Longitudinal Aging Study Amsterdam (LASA); data were determined using the LAPAQ, a validated physical activity questionnaire. In addition, variables that may affect daily physical activities in PD were recorded, including motor symptoms, depression, disability in daily life, and comorbidity. Patients were physically less active; a reduction of 29% compared to controls (95% CI, 10–44%). Multivariate regression analyses demonstrated that greater disease severity, gait impairment, and greater disability in daily living were associated with less daily physical activity in PD (R2 = 24%). In this large study, we show that PD patients are about one-third less active compared to controls. While disease severity, gait, and disability in daily living predicted part of the inactivity, a portion of the variance remained unexplained, suggesting that additional determinants may also affect daily physical activities in PD. Because physical inactivity has many adverse consequences, work is needed to develop safe and enjoyable exercise programs for patients with PD
    corecore