13 research outputs found
Recommended from our members
Thymic Stromal Lymphopoietin Induces Migration in Human Airway Smooth Muscle Cells
Airway remodeling due to increased airway smooth muscle (ASM) mass, likely due to enhanced migration and proliferation, has been shown to be highly associated with decline in lung function in asthma. Thymic stromal lymphopoietin (TSLP) is an IL-7-like, pro-allergic cytokine that has been shown to be necessary and sufficient for the development of allergic asthma. Human ASM (HASM) cells express TSLP receptor (TSLPR), the activation of which leads to enhanced release of proinflammatory mediators such as IL-6, CCL11/eotaxin-1, and CXCL8/IL-8. We show here that TSLP induces HASM cell migration through STAT3 activation since lentiviral-shRNA inhibition of STAT3 abrogated the TSLP-induced cell migration. Moreover, TSLP induced multiple cytoskeleton changes in HASM cells such as actin polymerization, cell polarization, and activation of small GTPase Rac1. Collectively, our data suggest a pro-migratory function of TSLP in ASM remodeling and provides better rationale for targeting TSLP/TSLPR pathway for therapeutic approaches in allergic asthma
IgE induces proliferation in human airway smooth muscle cells: role of MAPK and STAT3 pathways
Airway remodeling is not specifically targeted by current asthma medications, partly owing to the lack of understanding of remodeling mechanisms, altogether posing great challenges in asthma treatment. Increased airway smooth muscle (ASM) mass due to hyperplasia/hypertrophy contributes significantly to overall airway remodeling and correlates with decline in lung function. Recent evidence suggests that IgE sensitization can enhance the survival and mediator release in inflammatory cells. Human ASM (HASM) cells express both low affinity (FcεRII/CD23) and high affinity IgE Fc receptors (FcεRI), and IgE can modulate the contractile and synthetic function of HASM cells. IgE was recently shown to induce HASM cell proliferation but the detailed mechanisms remain unknown. We report here that IgE sensitization induces HASM cell proliferation, as measured by 3H-thymidine, EdU incorporation, and manual cell counting. As an upstream signature component of FcεRI signaling, inhibition of spleen tyrosine kinase (Syk) abrogated the IgE-induced HASM proliferation. Further analysis of IgE-induced signaling depicted an IgE-mediated activation of Erk 1/2, p38, JNK MAPK, and Akt kinases. Lastly, lentiviral-shRNA-mediated STAT3 silencing completely abolished the IgE-mediated HASM cell proliferation. Collectively, our data provide mechanisms of a novel function of IgE which may contribute, at least in part, to airway remodeling observed in allergic asthma by directly inducing HASM cell proliferation
Amastin Peptide-Binding Antibodies as Biomarkers of Active Human Visceral Leishmaniasis
Amastin surface proteins belong to a large family of developmentally regulated proteins comprising up to 45 members that have recently been discovered in the genus Leishmania and are highly similar to the amastin proteins in Trypanosoma cruzi. All members of the amastin gene family contain a highly conserved 11-amino-acid (aa) signature at the N terminus, which is unique to the amastin proteins and to the Trypanosomatidae family. Recent studies have demonstrated that this region is highly protective in a mouse model. The goal of the present study was to evaluate the potential of the 50-aa N-terminal domain of amastin proteins harboring the conserved 11-aa amastin signature peptide as a relevant immune biomarker of cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). We report here the amastin-binding total immunoglobulins (IgG) and/or IgG subclasses in the sera of patients at different stages of CL (n = 90) and VL (n = 41). In CL cases, there is no significant difference in seroreactivities between active, recovered, and nonhealed cases. However, the amastin peptide-reactive antibodies were present at high titers in 19 of 20 sera collected from patients with active VL compared to sera from patients recovered from VL and asymptomatic cases of VL. These data suggest that the amastin signature peptide could represent a relevant biomarker for the serodiagnosis of VL and, most importantly, that it could permit differentiation among the different stages of the disease
Recommended from our members
Downregulation of semaphorin 3E promotes hallmarks of experimental chronic allergic asthma
Guidance cues such as semaphorins are attractive novel therapeutic targets for allergic disorders. We have previously described an inhibitory effect of semaphorin 3E (Sema3E) on human airway smooth muscle cell function. We have further addressed a canonical role for Sema3E in acute model of allergic asthma in vivo. Considering the chronic nature of the disease, the potential implication of Sema3E to alleviate long-lasting deficits should be investigated. Expression of Sema3E in a chronic model of allergic asthma was assessed after exposure to house dust mite (HDM) as a clinically relevant allergen. Chronic features of allergic asthma including airway hyper-responsiveness (AHR), inflammation, and remodeling were studied in Sema3E-deficient mice. Additionally, the effect of exogenous Sema3E treatment was evaluated in prophylactic and therapeutic experimental models. We have demonstrated that expression of Sema3E is robustly suppressed in the airways upon chronic HDM exposure. Chronic allergic airway disease was significantly augmented in Sema3E-deficient mouse model which was associated with an increased AHR, remodeling, and Th2/Th17 inflammation. Intranasal Sema3E administration restored chronic deficits of allergic asthma in mice. Data from this study unveil a key regulatory role of Sema3E in chronic course of asthma via orchestration of impaired inflammatory and remodeling responses
Maternal gestational mercury exposure in relation to cord blood T cell alterations and placental gene expression signatures
The immunotoxic impacts of mercury during early life is poorly understood. We investigated the associations between gestational mercury exposure and frequency of cord blood T cells as well as placental gene expression. Frequency of natural Treg cells was positively associated with prenatal and postpartum mercury toenail concentrations. Frequency of NKT and activated naïve Th cells was positively associated with prenatal toenail mercury concentrations and number of maternal silver-mercury dental amalgams, respectively. Placental gene expression analyses revealed distinct gene signatures associated with mercury exposure. Decreased placental expression of a histone demethylase, KDM4DL, was associated with both higher prenatal and postpartum maternal toenail mercury levels among male infants and remained statistically significant after adjustment for fish and seafood consumption. The results suggest that gestational exposure to mercury concentrations contribute to alterations in both T cells and gene expression in placenta at birth. These alterations may inform mechanisms of mercury immunotoxicity.
•The immunotoxic impacts of maternal low-level mercury exposure are poorly understood.•Mercury exposure during gestation may contribute to T-cell alterations in cord blood.•Placental gene expression analyses show novel gene signatures on mercury exposure
Immune biomarkers link air pollution exposure to blood pressure in adolescents
BACKGROUND: Childhood exposure to air pollution contributes to cardiovascular disease in adulthood. Immune and oxidative stress disturbances might mediate the effects of air pollution on the cardiovascular system, but the underlying mechanisms are poorly understood in adolescents. Therefore, we aimed to identify immune biomarkers linking air pollution exposure and blood pressure levels in adolescents. METHODS: We randomly recruited 100 adolescents (mean age, 16 years) from Fresno, California. Using central-site data, spatial-temporal modeling, and distance weighting exposures to the participant's home, we estimated average pollutant levels [particulate matter (PM), polyaromatic hydrocarbons (PAH), ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx)]. We collected blood samples and vital signs on health visits. Using proteomic platforms, we quantitated markers of inflammation, oxidative stress, coagulation, and endothelial function. Immune cellular characterization was performed via mass cytometry (CyTOF). We investigated associations between pollutant levels, cytokines, immune cell types, and blood pressure (BP) using partial least squares (PLS) and linear regression, while adjusting for important confounders. RESULTS: Using PLS, biomarkers explaining most of the variance in air pollution exposure included markers of oxidative stress (GDF-15 and myeloperoxidase), acute inflammation (C-reactive protein), hemostasis (ADAMTS, D-dimer) and immune cell types such as monocytes. Most of these biomarkers were independently associated with the air pollution levels in fully adjusted regression models. In CyTOF analyses, monocytes were enriched in participants with the highest versus the lowest PM2.5 exposure. In both PLS and linear regression, diastolic BP was independently associated with PM2.5, NO, NO2, CO and PAH456 pollution levels (P ≤ 0.009). Moreover, monocyte levels were independently related to both air pollution and diastolic BP levels (P ≤ 0.010). In in vitro cell assays, plasma of participants with high PM2.5 exposure induced endothelial dysfunction as evaluated by eNOS and ICAM-1 expression and tube formation. CONCLUSIONS: For the first time in adolescents, we found that ambient air pollution levels were associated with oxidative stress, acute inflammation, altered hemostasis, endothelial dysfunction, monocyte enrichment and diastolic blood pressure. Our findings provide new insights on pollution-related immunological and cardiovascular disturbances and advocate preventative measures of air pollution exposure.status: publishe