110 research outputs found
Interference of breast implants with echocardiographic image acquisition and interpretation
Echocardiography is one of the most important diagnostic testing in cardiology. The presence of a breast implant overlying heart can cause significant impairment of the echocardiographic acoustic window. Breast implants are increasing in popularity in the USA and the Federal Drug and Food Administration (FDA) just approved silicone implants again. In this review, the impact of silicone breast implant on the echocardiographic image acquisition and interpretation is discussed
Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography
Background Bicuspid aortic valve (BAV) is one of the most common congenital heart defects with a population prevalence of 0.5% to 1.3%. Identifying patients with BAV is clinically relevant because BAV is associated with aortic stenosis, endocarditis and ascending aorta pathology. Methods and Results Patients with severe aortic stenosis necessitating aortic valve replacement surgery were included in this study. All dissected aortic valves Were stored in the biobank of the University Medical Centre Utrecht. Additionally to the morphological assessment of the aortic valve by the surgeon and pathologist, echocardiographic and magnetic resonance imaging (MRI) images were evaluated. A total of 80 patients were included of whom 32 (40%) were diagnosed with BAV by the surgeon (gold standard). Patients with BAV were significantly younger (55 vs 71 years) and were more frequently male. Notably, a significant difference was found between the surgeon and pathologist in determining valve morphology. MRI was performed in 33% of patients. MRI could assess valve morphology in 96% vs 73% with echocardiography. The sensitivity of MRI for BAV in a population of patients with severe aortic stenosis was higher than echocardiography (75% vs 55%), whereas specificity was better with the latter (91% vs 79%). Typically, the ascending aorta was larger in patients with BAV. Conclusion Among unselected patients with severe aortic valve stenosis, a high percentage of patients with BAV were found. Imaging and assessment of the aortic valve morphology when stenotic is challengin
Fibrin structure in organized thrombotic material removed during pulmonary artery endarterectormy : the effect of vessel calibre
Pulmonary endarterectomy (PEA) is a curative therapeutic approach in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The location-dependent structural differences of thrombotic material found in pulmonary arteries in CTEPH are poorly investigated. We present the case of a 47-year-old woman with antiphospholipid syndrome, diabetes mellitus and abnormal fibrin phenotype, who underwent PEA for CTEPH. Intravascular material removed bilaterally during PEA (from lobar, segmental and sub-segmental arteries) has been studied using light and scanning electron microscopy (SEM). Light microscopy showed tighter fibrous network in the portions of intraluminal thrombotic material facing the vessel wall, which contained collagen and fibrin fibers, and abundant cells. Cells, evaluated by immunostaining, were present in the whole removed material. Tissue factor expression was also observed with the highest values in the portions of intravascular material facing the vessel wall. In the main pulmonary arteries, SEM images revealed thick fibers of fibrous proteins loosly meshed and few erythrocytes and platelets between them (both dysmorphic “wedged” and fresh cells were present). In the fibrotic layers, containing mainly collagen and fibrin, removed from the lobar/segmental pulmonary arteries we found a stepwise increase in fiber density with decreasing vessel calibre, followed by denser fibrous networks composed of thinner fibers. Elastic fibers in the lobar and segmental arteries were aligned along the blood flow vector. These findings demonstrate differences in the structure of endarterectomized PEA material dependent on the vessel calibre and might contribute to understanding of CTEPH pathophysiology
Incidence and Severity of Coronary Artery Disease in Patients with Atrial Fibrillation Undergoing First-Time Coronary Angiography
In standard reference sources, the incidence of coronary artery disease (CAD) in patients with atrial fibrillation (AF) ranged between 24 and 46.5%. Since then, the incidence of cardiovascular risk factors (CRF) has increased and modern treatment strategies ("pill in the pocket") are only applicable to patients without structural heart disease. The aim of this study was to investigate the incidence and severity of CAD in patients with AF.From January 2005 until December 2009, we included 261 consecutive patients admitted to hospital with paroxysmal, persistent or permanent AF in this prospective study. All patients underwent coronary angiography and the Framingham risk score (FRS) was calculated. Patients with previously diagnosed or previously excluded CAD were excluded.The overall incidence of CAD in patients presenting with AF was 34%; in patients >70 years, the incidence of CAD was 41%. The incidence of patients undergoing a percutaneous coronary intervention (PCI) or coronary artery bypass graft (CABG) was 21%. Patients with CAD were older (73±8 years vs 68±10 years, p = 0.001), had significantly more frequent hypercholesterolemia (60% vs 30%, p<0.001), were more frequent smokers (26% vs 13%, p = 0.017) and suffered from angina more often (37% vs 2%, p<0.001). There was a significant linear trend among the FRS categories in percentage and the prevalence of CAD and PCI/CABG (p<0.0001).The overall incidence of CAD in patients presenting with AF was relatively high at 34%; the incidence of PCI/CABG was 21%. Based upon increasing CRF in the western world, we recommend a careful investigation respecting the FRS to either definitely exclude or establish an early diagnosis of CAD--which could contribute to an early and safe therapeutic strategy considering type Ic antiarrhythmics and oral anticoagulation
Autologous microsurgical breast reconstruction and coronary artery bypass grafting: an anatomical study and clinical implications
OBJECTIVE: To identify possible avenues of sparing the internal mammary artery (IMA) for coronary artery bypass grafting (CABG) in women undergoing autologous breast reconstruction with deep inferior epigastric artery perforator (DIEP) flaps. BACKGROUND: Optimal autologous reconstruction of the breast and coronary artery bypass grafting (CABG) are often mutually exclusive as they both require utilisation of the IMA as the preferred arterial conduit. Given the prevalence of both breast cancer and coronary artery disease, this is an important issue for women's health as women with DIEP flap reconstructions and women at increased risk of developing coronary artery disease are potentially restricted from receiving this reconstructive option should the other condition arise. METHODS: The largest clinical and cadaveric anatomical study (n=315) to date was performed, investigating four solutions to this predicament by correlating the precise requirements of breast reconstruction and CABG against the anatomical features of the in situ IMAs. This information was supplemented by a thorough literature review. RESULTS: Minimum lengths of the left and right IMA needed for grafting to the left-anterior descending artery are 160.08 and 177.80 mm, respectively. Based on anatomical findings, the suitable options for anastomosis to each intercostals space are offered. In addition, 87-91% of patients have IMA perforator vessels to which DIEP flaps can be anastomosed in the first- and second-intercostal spaces. CONCLUSION: We outline five methods of preserving the IMA for future CABG: (1) lowering the level of DIEP flaps to the fourth- and fifth-intercostals spaces, (2) using the DIEP pedicle as an intermediary for CABG, (3) using IMA perforators to spare the IMA proper, (4) using and end-to-side anastomosis between the DIEP pedicle and IMA and (5) anastomosis of DIEP flaps using retrograde flow from the distal IMA. With careful patient selection, we hypothesize using the IMA for autologous breast reconstruction need not be an absolute contraindication for future CABG
Left ventricular mechanical dysfunction in diet-induced obese mice is exacerbated during inotropic stress: a cine DENSE cardiovascular magnetic resonance study
BACKGROUND: Obesity is a risk factor for cardiovascular disease. There is evidence of impaired left ventricular (LV) function associated with obesity, which may relate to cardiovascular mortality, but some studies have reported no dysfunction. Ventricular function data are generally acquired under resting conditions, which could mask subtle differences and potentially contribute to these contradictory findings. Furthermore, abnormal ventricular mechanics (strains, strain rates, and torsion) may manifest prior to global changes in cardiac function (i.e., ejection fraction) and may therefore represent more sensitive markers of cardiovascular disease. This study evaluated LV mechanics under both resting and stress conditions with the hypothesis that the LV mechanical dysfunction associated with obesity is exacerbated with stress and manifested at earlier stages of disease compared to baseline. METHODS: C57BL/6J mice were randomized to a high-fat or control diet (60 %, 10 % kcal from fat, respectively) for varying time intervals (n = 7 – 10 subjects per group per time point, 100 total; 4 – 55 weeks on diet). LV mechanics were quantified under baseline (resting) and/or stress conditions (40 μg/kg/min continuous infusion of dobutamine) using cine displacement encoding with stimulated echoes (DENSE) with 7.4 ms temporal resolution on a 7 T Bruker ClinScan. Peak strain, systolic strain rates, and torsion were quantified. A linear mixed model was used with Benjamini-Hochberg adjustments for multiple comparisons. RESULTS: Reductions in LV peak longitudinal strain at baseline were first observed in the obese group after 42 weeks, with no differences in systolic strain rates or torsion. Conversely, reductions in longitudinal strain and circumferential and radial strain rates were seen under inotropic stress conditions after only 22 weeks on diet. Furthermore, stress cardiovascular magnetic resonance (CMR) evaluation revealed supranormal values of LV radial strain and torsion in the obese group early on diet, followed by later deficits. CONCLUSIONS: Differences in left ventricular mechanics in obese mice are exacerbated under stress conditions. Stress CMR demonstrated a broader array of mechanical dysfunction and revealed these differences at earlier time points. Thus, it may be important to evaluate cardiac function in the setting of obesity under stress conditions to fully elucidate the presence of ventricular dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12968-015-0180-7) contains supplementary material, which is available to authorized users
- …