64 research outputs found

    Mediterranean spotted fever-like illness caused by Rickettsia sibirica mongolitimonae, North Macedonia, June 2022

    Get PDF
    Mediterranean spotted fever-like illness (MSF-like illness) is a tick-borne disease caused by Rickettsia sibirica mongolitimonae first reported in France more than 25 years ago. Until today, more than 50 cases of MSF-like illness have been reported in different regions of Europe and Africa, highlighting variable clinical manifestation. Here we report a case of MSF-like illness following a bite from a Hyalomma tick in the Skopje region of North Macedonia

    High-throughput screening of tick-borne pathogens in Europe

    Get PDF
    Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases

    Predicting Distribution of Aedes Aegypti and Culex Pipiens Complex, Potential Vectors of Rift Valley Fever Virus in Relation to Disease Epidemics in East Africa.

    Get PDF
    The East African region has experienced several Rift Valley fever (RVF) outbreaks since the 1930s. The objective of this study was to identify distributions of potential disease vectors in relation to disease epidemics. Understanding disease vector potential distributions is a major concern for disease transmission dynamics. DIVERSE ECOLOGICAL NICHE MODELLING TECHNIQUES HAVE BEEN DEVELOPED FOR THIS PURPOSE: we present a maximum entropy (Maxent) approach for estimating distributions of potential RVF vectors in un-sampled areas in East Africa. We modelled the distribution of two species of mosquitoes (Aedes aegypti and Culex pipiens complex) responsible for potential maintenance and amplification of the virus, respectively. Predicted distributions of environmentally suitable areas in East Africa were based on the presence-only occurrence data derived from our entomological study in Ngorongoro District in northern Tanzania. Our model predicted potential suitable areas with high success rates of 90.9% for A. aegypti and 91.6% for C. pipiens complex. Model performance was statistically significantly better than random for both species. Most suitable sites for the two vectors were predicted in central and northwestern Tanzania with previous disease epidemics. Other important risk areas include western Lake Victoria, northern parts of Lake Malawi, and the Rift Valley region of Kenya. Findings from this study show distributions of vectors had biological and epidemiological significance in relation to disease outbreak hotspots, and hence provide guidance for the selection of sampling areas for RVF vectors during inter-epidemic periods

    The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts.: Role of NSm-related proteins in RVFV infection

    Get PDF
    International audienceRift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm', was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm' was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts

    Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    Get PDF
    Rift Valley fever virus is transmitted mainly by mosquitoes and causes disease in humans and animals throughout Africa and the Arabian Peninsula. The impact of disease is large in terms of human illness and mortality, and economic impact on the livestock industry. For these reasons, and because there is a risk of this virus spreading to Europe and North America, it is important to develop a vaccine that is stable, safe and effective in preventing infection. Potential vaccine viruses have been developed through deletion of two genes (NSs and NSm) affecting virus virulence. Because this virus is normally transmitted by mosquitoes we must determine the effects of the deletions in these vaccine viruses on their ability to infect and be transmitted by mosquitoes. An optimal vaccine virus would not infect or be transmitted. The viruses were tested in two mosquito species: Aedes aegypti and Culex quinquefasciatus. Deletion of the NSm gene reduced infection of Ae. aegypti mosquitoes indicating a role for the NSm protein in mosquito infection. The virus with deletion of both NSs and NSm genes was the best vaccine candidate since it did not infect Ae. aegypti and showed reduced infection and transmission rates in Cx. quinquefasciatus

    Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus

    Get PDF
    Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks

    Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Fever Viruses in the Maghreb Region

    Get PDF
    West Nile fever (WNF) and Rift Valley fever (RVF) are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV) circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV) re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 107.8 and 108.5 plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14–21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology

    Estimating the Magnitude and Direction of Altered Arbovirus Transmission Due to Viral Phenotype

    Get PDF
    Vectorial capacity is a measure of the transmission potential of a vector borne pathogen within a susceptible population. Vector competence, a component of the vectorial capacity equation, is the ability of an arthropod to transmit an infectious agent following exposure to that agent. Comparisons of arbovirus strain-specific vector competence estimates have been used to support observed or hypothesized differences in transmission capability. Typically, such comparisons are made at a single time point during the extrinsic incubation period, the time in days it takes for the virus to replicate and disseminate to the salivary glands. However, vectorial capacity includes crucial parameters needed to effectively evaluate transmission capability, though often this is based on the discrete vector competence values. Utilization of the rate of change of vector competence over a range of days gives a more accurate measurement of the transmission potential. Accordingly, we investigated the rate of change in vector competence of dengue virus in Aedes aegypti mosquitoes and the resulting vectorial capacity curves. The areas under the curves represent the effective vector competence and the cumulative transmission potentials of arboviruses within a population of mosquitoes. We used the calculated area under the curve for each virus strain and the corresponding variance estimates to test for differences in cumulative transmission potentials between strains of dengue virus based on our dynamic model. To further characterize differences between dengue strains, we devised a displacement index interpreted as the capability of a newly introduced strain to displace the established, dominant circulating strain. The displacement index can be used to better understand the transmission dynamics in systems where multiple strains/serotypes circulate or even multiple arbovirus species. The use of a rate of a rate of change based model of vectorial capacity and the informative calculations of the displacement index will lead to better measurements of the differences in transmission potential of arboviruses
    corecore