359 research outputs found

    Differential responses of the mosquito Aedes albopictus from the Indian Ocean region to two chikungunya isolates

    Get PDF
    International audienceBACKGROUND: Aedes aegypti and Aedes albopictus are both vectors of chikungunya virus (CHIKV). The two Aedes species co-exist in the Indian Ocean region and were involved in the 2005-2006 CHIKV outbreaks. In the Reunion Island, a single mutation in the viral envelope has been selected that leads to high levels of replication in Ae. albopictus, and a short extrinsic incubation period as the virus could be found in saliva as early as two days after infection. An important question is whether this variant is associated with adverse effects impacting some mosquito life-history traits such as survival and reproduction. RESULTS: We performed experimental infections using three mosquito strains of Ae. aegypti Mayotte and Ae. albopictus (Mayotte and Reunion), and two CHIKV strains (E1-226A and E1-226V). Ae. aegypti Mayotte were similarly susceptible to both viral strains, whereas Ae. albopictus Mayotte and Ae. albopictus Reunion were more susceptible to CHIKV E1-226V than to E1-226A. In terms of life-history traits measured by examining mosquito survival and reproduction, we found that: (1) differences were observed between responses of mosquito species to the two viruses, (2) CHIKV infection only affected significantly some life-history traits of Ae. albopictus Reunion and not of the other two mosquito strains, and (3) CHIKV reduced the lifespan of Ae. albopictus Reunion and shortened the time before egg laying. CONCLUSION: We demonstrated that CHIKV only reduces the survival of Ae. albopictus from the Reunion Island. By laying eggs just before death, reproduction of Ae. albopictus from the Reunion Island is not reduced since other parameters characterizing oviposition and hatching were not affected

    Upscaling the surveillance of tick-borne pathogens in the French Caribbean Islands

    Get PDF
    Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of Amblyomma variegatum and 446 of Rhipicephalus microplus collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area—Ehrlichia ruminantium, Rickettsia africae, Anaplasma marginale, Babesia bigemina and Babesia bovis—but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the Anaplasma, Ehrlichia, Borrelia and Leishmania genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens

    Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Get PDF
    Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF) virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells

    Handling the Microbial Complexity Associated to Ticks

    Get PDF
    Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. In the last years, high-throughput detection and sequencing technologies (HTT) have revealed that individual ticks carry a high diversity of microorganisms, including pathogenic and non-pathogenic bacteria. Despite several studies have contributed to the availability of a catalog of microorganisms associated to different tick species, major limitations and challenges remain ahead HTT studies to acquire further insights on the microbial complexity associated to ticks. Currently, using next generation sequencing (NGS), bacteria genera (or higher taxonomic levels) can be recorded; however, species identification remains problematic which in turn affects pathogen detection using NGS. Microfluidic PCR, a high-throughput detection technology, can detect up to 96 different pathogen species, and its combination with NGS might render interesting insights into pathogen-microbiota co-occurrence patterns. Microfluidic PCR, however, is also limited because detection of pathogen strains has not been implemented, and therefore, putative associations among bacterial genotypes are currently unknown. Combining NGS and microfluidic PCR data may prove challenging. Here, we review the impact of some HTT applied to tick microbiology research and propose network analysis as an integrative data analysis benchmark to unravel the structure and significance of microbial communities associated to ticks in different ecosystems

    Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks

    Get PDF
    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., "Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., "Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s. s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and "Candidatus Neoehrlichia mikurensis" (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite

    Mediterranean spotted fever-like illness caused by Rickettsia sibirica mongolitimonae, North Macedonia, June 2022

    Get PDF
    Mediterranean spotted fever-like illness (MSF-like illness) is a tick-borne disease caused by Rickettsia sibirica mongolitimonae first reported in France more than 25 years ago. Until today, more than 50 cases of MSF-like illness have been reported in different regions of Europe and Africa, highlighting variable clinical manifestation. Here we report a case of MSF-like illness following a bite from a Hyalomma tick in the Skopje region of North Macedonia

    A Novel High Discriminatory Protocol for the Detection of Borrelia afzelii, Borrelia burgdorferi Sensu Stricto and Borrelia garinii in Ticks

    Get PDF
    Bacteria of the Borrelia burgdorferi sensu lato complex are the causative agents of Lyme borreliosis (LB). Even if the conventional diagnosis of LB does not rely on the species itself, an accurate species identification within the complex will provide a deepened epidemiological scenario, a better diagnosis leading to a more targeted therapeutic approach, as well as promote the general public's awareness. A comparative genomics approach based on the 210 Borrelia spp. genomes available in 2019 were used to set up three species-specific PCR protocols, able to detect and provide species typing of Borrelia afzelii, Borrelia burgdorferi sensu stricto (s.s.) and Borrelia garinii, the three most common and important human pathogenic Lyme Borrelia species in Europe. The species-specificity of these protocols was confirmed on previously identified B. afzelii, B. burgdorferi s.s. and B. garinii specimens detected in Ixodes ricinus samples. In addition, the protocols were validated on 120 DNA samples from ticks collected in Sweden, showing 88% accuracy, 100% precision, 72% sensitivity and 100% specificity. The proposed approach represents an innovative tool in epidemiological studies focused on B. burgdorferi s.l. occurrence in ticks, and future studies could suggest its helpfulness in routine diagnostic tests for health care
    corecore