42 research outputs found

    Increasing the Net Charge and Decreasing the Hydrophobicity of Bovine Carbonic Anhydrase Decreases the Rate of Denaturation with Sodium Dodecyl Sulfate

    Get PDF
    AbstractThis study compares the rate of denaturation with sodium dodecyl sulfate (SDS) of the individual rungs of protein charge ladders generated by acylation of the lysine Δ−NH3+ groups of bovine carbonic anhydrase II (BCA). Each acylation decreases the number of positively charged groups, increases the net negative charge, and increases the hydrophobic surface area of BCA. This study reports the kinetics of denaturation in solutions containing SDS of the protein charge ladders generated with acetic and hexanoic anhydrides; plotting these rates of denaturation as a function of the number of modifications yields a U-shaped curve. The proteins with an intermediate number of modifications are the most stable to denaturation by SDS. There are four competing interactions—two resulting from the change in electrostatics and two resulting from the change in exposed hydrophobic surface area—that determine how a modification affects the stability of a rung of a charge ladder of BCA to denaturation with SDS. A model based on assumptions about how these interactions affect the folded and transition states has been developed and fits the experimental results. Modeling indicates that for each additional acylation, the magnitude of the change in the activation energy of denaturation (ΔΔG‡) due to changes in the electrostatics is much larger than the change in ΔΔG‡ due to changes in the hydrophobicity, but the intermolecular and intramolecular electrostatic effects are opposite in sign. At the high numbers of acylations, hydrophobic interactions cause the hexanoyl-modified BCA to denature nearly three orders of magnitude more rapidly than the acetyl-modified BCA

    Is it the shape of the cavity, or the shape of the water in the cavity?

    Get PDF
    Historical interpretations of the thermodynamics characterizing biomolecular recognition have marginalized the role of water. An important (even, perhaps, dominant) contribution to molecular recognition in water comes from the “hydrophobic effect,” in which non-polar portions of a ligand interact preferentially with non-polar regions of a protein. Water surrounds the ligand, and water fills the binding pocket of the protein: when the protein-ligand complex forms, and hydrophobic surfaces of the binding pocket and the ligand approach one another, the molecules (and hydrogen-bonded networks of molecules) of water associated with both surfaces rearrange and, in part, entirely escape into the bulk solution. It is now clear that neither of the two most commonly cited rationalizations for the hydrophobic effect—an entropy-dominated hydrophobic effect, in which ordered waters at the surface of the ligand, and water at the surface of the protein, are released to the bulk upon binding, and a “lock-and-key” model, in which the surface of a ligand interacts directly with a surface of a protein having a complementary shape–can account for water-mediated interactions between the ligand and the protein, and neither is sufficient to account for the experimental observation of both entropy- andenthalpy-dominated hydrophobic effects. What is now clear is that there is no single hydrophobic effect, with a universally applicable, common, thermodynamic description: different processes (i.e., partitioning between phases of different hydrophobicity, aggregation in water, and binding) with different thermodynamics, depend on the molecular-level details of the structures of the molecules involved, and of the aggregates that form. A “water-centric” description of the hydrophobic effect in biomolecular recognition focuses on the structures of water surrounding the ligand, and of water filling the binding pocket of the protein, both before and after binding. This view attributes the hydrophobic effect to changes in the free energy of the networks of hydrogen bonds that are formed, broken, or re-arranged when two hydrophobic surfaces approach (but do not necessarily contact) one another. The details of the molecular topography (and the polar character) of the mole- cular surfaces play an important role in determining the structure of these networks of hydrogen-bonded waters, and in the thermodynamic description of the hydrophobic effect(s). Theorists have led the formulation of this “water-centric view”, although experiments are now supplying support for it. It poses complex problems for would-be “designers” of protein-ligand interactions, and for so-called “rational drug design”.Chemistry and Chemical Biolog

    Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP

    No full text
    The SZMAP method computes binding free energies and the corresponding thermodynamic components for water molecules in the binding site of a protein structure [SZMAP, 1.0.0; OpenEye Scientific Software Inc.: Santa Fe, NM, USA, 2011]. In this work, the ability of SZMAP to predict water structure and thermodynamic stability is examined for the X-ray crystal structures of a series of protein–ligand complexes. SZMAP results correlate with higher-level replica exchange thermodynamic integration double decoupling calculations of the absolute free energy of bound waters in the test set complexes. In addition, SZMAP calculations show good agreement with experimental data in terms of water conservation (across multiple crystal structures) and B-factors over a subset of the test set. In particular, the SZMAP neutral entropy difference term calculated at crystallographic water positions within each of the complex structures correlates well with whether that crystallographic water is conserved or displaceable. Furthermore, the calculated entropy of the water probe relative to the continuum shows a significant degree of correlation with the B-factors associated with the oxygen atoms of the water molecules. Taken together, these results indicate that SZMAP is capable of quantitatively predicting water positions and their energetics and is potentially a useful tool for determining which waters to attempt to displace, maintain, or build in through water-mediated interactions when evolving a lead series during a drug discovery program

    DOCK 6: Impact of new features and current docking performance

    No full text
    This manuscript presents the latest algorithmic and methodological developments to the structure-based design program DOCK 6.7 focused on an updated internal energy function, new anchor selection control, enhanced minimization options, a footprint similarity scoring function, a symmetry-corrected root-mean-square deviation algorithm, a database filter, and docking forensic tools. An important strategy during development involved use of three orthogonal metrics for assessment and validation: pose reproduction over a large database of 1043 protein-ligand complexes (SB2012 test set), cross-docking to 24 drug-target protein families, and database enrichment using large active and decoy datasets (Directory of Useful Decoys [DUD]-E test set) for five important proteins including HIV protease and IGF-1R. Relative to earlier versions, a key outcome of the work is a significant increase in pose reproduction success in going from DOCK 4.0.2 (51.4%) → 5.4 (65.2%) → 6.7 (73.3%) as a result of significant decreases in failure arising from both sampling 24.1% → 13.6% → 9.1% and scoring 24.4% → 21.1% → 17.5%. Companion cross-docking and enrichment studies with the new version highlight other strengths and remaining areas for improvement, especially for systems containing metal ions. The source code for DOCK 6.7 is available for download and free for academic users at http://dock.compbio.ucsf.edu/
    corecore