24 research outputs found

    Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes

    Get PDF
    The formation of interpolyelectrolyte complexes (IPEC) between Eudragit® E PO (EE) and Eudragit® L 100-55 (EL) was investigated, using turbidimetry, apparent viscosity measurements, elementary analysis and MT-DSC. The structure of the synthesized IPEC was investigated using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 at pH 5.5. Based on the results of elementary analysis and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements and indicate that the synthesized products can be considered as IPEC. As a result of electrostatic interaction between the polymer chains, the glass transition temperature of the IPEC increased significantly. Due to the structure of the IPEC, two maxima were observed in the swelling behavior as a function of pH. The release of the model drug ibuprofen (IBF) was significantly retarded from tablets made up of the IPEC as compared with individual copolymers, its physical mixture and Eudragit® RL PO (RL), RS PO (RS). © 2005 Elsevier B.V. All rights reserved

    Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum?

    Get PDF
    The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug

    Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes

    No full text
    The formation of interpolyelectrolyte complexes (IPEC) between Eudragit® E PO (EE) and Eudragit® L 100-55 (EL) was investigated, using turbidimetry, apparent viscosity measurements, elementary analysis and MT-DSC. The structure of the synthesized IPEC was investigated using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 at pH 5.5. Based on the results of elementary analysis and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements and indicate that the synthesized products can be considered as IPEC. As a result of electrostatic interaction between the polymer chains, the glass transition temperature of the IPEC increased significantly. Due to the structure of the IPEC, two maxima were observed in the swelling behavior as a function of pH. The release of the model drug ibuprofen (IBF) was significantly retarded from tablets made up of the IPEC as compared with individual copolymers, its physical mixture and Eudragit® RL PO (RL), RS PO (RS). © 2005 Elsevier B.V. All rights reserved

    Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes

    No full text
    The formation of interpolyelectrolyte complexes (IPEC) between Eudragit® E PO (EE) and Eudragit® L 100-55 (EL) was investigated, using turbidimetry, apparent viscosity measurements, elementary analysis and MT-DSC. The structure of the synthesized IPEC was investigated using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 at pH 5.5. Based on the results of elementary analysis and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements and indicate that the synthesized products can be considered as IPEC. As a result of electrostatic interaction between the polymer chains, the glass transition temperature of the IPEC increased significantly. Due to the structure of the IPEC, two maxima were observed in the swelling behavior as a function of pH. The release of the model drug ibuprofen (IBF) was significantly retarded from tablets made up of the IPEC as compared with individual copolymers, its physical mixture and Eudragit® RL PO (RL), RS PO (RS). © 2005 Elsevier B.V. All rights reserved

    Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes

    Get PDF
    The formation of interpolyelectrolyte complexes (IPEC) between Eudragit® E PO (EE) and Eudragit® L 100-55 (EL) was investigated, using turbidimetry, apparent viscosity measurements, elementary analysis and MT-DSC. The structure of the synthesized IPEC was investigated using FT-IR spectroscopy. The binding ratio of a unit molecule of EL with EE was found to be approximately 1:1 at pH 5.5. Based on the results of elementary analysis and FT-IR, the binding ratio of each component in the solid complexes was very close to that observed in turbidity and apparent viscosity measurements and indicate that the synthesized products can be considered as IPEC. As a result of electrostatic interaction between the polymer chains, the glass transition temperature of the IPEC increased significantly. Due to the structure of the IPEC, two maxima were observed in the swelling behavior as a function of pH. The release of the model drug ibuprofen (IBF) was significantly retarded from tablets made up of the IPEC as compared with individual copolymers, its physical mixture and Eudragit® RL PO (RL), RS PO (RS). © 2005 Elsevier B.V. All rights reserved

    THE FEATURES OF THE PREDICTIVE DISSOLUTION TESTING (REVIEW)

    Get PDF
    Dissolution test plays an important role at different levels of the development and manufacturing drugs as one of the major quality control tools and an integral part of In vitro tests in the study of drug release from the developed dosage forms. Article describes the basic parameters that should be considered in predictive dissolution tests, such as the selection criteria and the composition of biorelevant dissolution media, fluid dynamics, volume and transfer of the dissolution media
    corecore