934 research outputs found

    Traveling through potential energy landscapes of disordered materials: the activation-relaxation technique

    Full text link
    A detailed description of the activation-relaxation technique (ART) is presented. This method defines events in the configurational energy landscape of disordered materials, such as a-Si, glasses and polymers, in a two-step process: first, a configuration is activated from a local minimum to a nearby saddle-point; next, the configuration is relaxed to a new minimum; this allows for jumps over energy barriers much higher than what can be reached with standard techniques. Such events can serve as basic steps in equilibrium and kinetic Monte Carlo schemes.Comment: 7 pages, 2 postscript figure

    Event-based relaxation of continuous disordered systems

    Full text link
    A computational approach is presented to obtain energy-minimized structures in glassy materials. This approach, the activation-relaxation technique (ART), achieves its efficiency by focusing on significant changes in the microscopic structure (events). The application of ART is illustrated with two examples: the structure of amorphous silicon, and the structure of Ni80P20, a metallic glass.Comment: 4 pages, revtex, epsf.sty, 3 figure

    Structural, electronic, and dynamical properties of amorphous gallium arsenide: a comparison between two topological models

    Full text link
    We present a detailed study of the effect of local chemical ordering on the structural, electronic, and dynamical properties of amorphous gallium arsenide. Using the recently-proposed ``activation-relaxation technique'' and empirical potentials, we have constructed two 216-atom tetrahedral continuous random networks with different topological properties, which were further relaxed using tight-binding molecular dynamics. The first network corresponds to the traditional, amorphous, Polk-type, network, randomly decorated with Ga and As atoms. The second is an amorphous structure with a minimum of wrong (homopolar) bonds, and therefore a minimum of odd-membered atomic rings, and thus corresponds to the Connell-Temkin model. By comparing the structural, electronic, and dynamical properties of these two models, we show that the Connell-Temkin network is energetically favored over Polk, but that most properties are little affected by the differences in topology. We conclude that most indirect experimental evidence for the presence (or absence) of wrong bonds is much weaker than previously believed and that only direct structural measurements, i.e., of such quantities as partial radial distribution functions, can provide quantitative information on these defects in a-GaAs.Comment: 10 pages, 7 ps figures with eps

    Self-organized criticality in the intermediate phase of rigidity percolation

    Full text link
    Experimental results for covalent glasses have highlighted the existence of a new self-organized phase due to the tendency of glass networks to minimize internal stress. Recently, we have shown that an equilibrated self-organized two-dimensional lattice-based model also possesses an intermediate phase in which a percolating rigid cluster exists with a probability between zero and one, depending on the average coordination of the network. In this paper, we study the properties of this intermediate phase in more detail. We find that microscopic perturbations, such as the addition or removal of a single bond, can affect the rigidity of macroscopic regions of the network, in particular, creating or destroying percolation. This, together with a power-law distribution of rigid cluster sizes, suggests that the system is maintained in a critical state on the rigid/floppy boundary throughout the intermediate phase, a behavior similar to self-organized criticality, but, remarkably, in a thermodynamically equilibrated state. The distinction between percolating and non-percolating networks appears physically meaningless, even though the percolating cluster, when it exists, takes up a finite fraction of the network. We point out both similarities and differences between the intermediate phase and the critical point of ordinary percolation models without self-organization. Our results are consistent with an interpretation of recent experiments on the pressure dependence of Raman frequencies in chalcogenide glasses in terms of network homogeneity.Comment: 20 pages, 18 figure

    Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild Yeast Saccharomyces paradoxus

    Get PDF
    This study uses population genomic data to estimate demographic and selection parameters in two sister lineages of the wild yeast Saccharomyces paradoxus and compare their evolution. We first estimate nucleotide and recombinational diversities in each of the two lineages to infer their population size and frequency of sex and then analyze the rate of mutation accumulation since divergence from their inferred common ancestor to estimate the generation time and efficacy of selection. We find that one of the lineages has significantly higher silent nucleotide diversity and lower linkage disequilibrium, indicating a larger population with more frequent sexual generations. The same lineage also shows shorter generation time and higher efficacy of purifying selection, the latter consistent with the finding of larger population size and more frequent sex. Similar analyses are also performed on the ancestries of individual strains within lineages and we find significant differences between strains implying variation in rates of mitotic cell divisions. Our sample includes some strains originating in the Chernobyl nuclear-accident exclusion zone, which has been subjected to high levels of radiation for nearly 30 years now. We find no evidence, however, for increased rates of mutation. Finally, there is a positive correlation between rates of mutation accumulation and length of growing period, as measured by latitude of the place of origin of strains. Our study illustrates the power of genomic analyses in estimating population and life history parameters and testing predictions based on population genetic theory

    Self-organization with equilibration: a model for the intermediate phase in rigidity percolation

    Full text link
    Recent experimental results for covalent glasses suggest the existence of an intermediate phase attributed to the self-organization of the glass network resulting from the tendency to minimize its internal stress. However, the exact nature of this experimentally measured phase remains unclear. We modify a previously proposed model of self-organization by generating a uniform sampling of stress-free networks. In our model, studied on a diluted triangular lattice, an unusual intermediate phase appears, in which both rigid and floppy networks have a chance to occur, a result also observed in a related model on a Bethe lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for the bond-configurational entropy of self-organized networks, which turns out to be only about 2% lower than that of random networks, suggest that a self-organized intermediate phase could be common in systems near the rigidity percolation threshold.Comment: 9 pages, 6 figure

    Crater lake cichlids individually specialize along the benthic-limnetic axis

    Get PDF
    A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic- as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence

    Drug treatment of malaria infections can reduce levels of protection transferred to offspring via maternal immunity

    Get PDF
    Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naïve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns

    Simulation study of the inhomogeneous Olami-Feder-Christensen model of earthquakes

    Full text link
    Statistical properties of the inhomogeneous version of the Olami-Feder-Christensen (OFC) model of earthquakes is investigated by numerical simulations. The spatial inhomogeneity is assumed to be dynamical. Critical features found in the original homogeneous OFC model, e.g., the Gutenberg-Richter law and the Omori law are often weakened or suppressed in the presence of inhomogeneity, whereas the characteristic features found in the original homogeneous OFC model, e.g., the near-periodic recurrence of large events and the asperity-like phenomena persist.Comment: Shortened from the first version. To appear in European Physical Journal

    Towards device-size atomistic models of amorphous silicon

    Full text link
    The atomic structure of amorphous materials is believed to be well described by the continuous random network model. We present an algorithm for the generation of large, high-quality continuous random networks. The algorithm is a variation of the "sillium" approach introduced by Wooten, Winer, and Weaire. By employing local relaxation techniques, local atomic rearrangements can be tried that scale almost independently of system size. This scaling property of the algorithm paves the way for the generation of realistic device-size atomic networks.Comment: 7 pages, 3 figure
    corecore