9 research outputs found

    Exploitation of Herpesvirus Immune Evasion Strategies to Modify the Immunogenicity of Human Mesenchymal Stem Cell Transplants

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS: We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable

    IKK

    No full text

    Human coronavirus NL63, France

    Get PDF
    The human coronavirus NL63 (HCoV-NL63) was first identified in The Netherlands, and its circulation in France has not been investigated. We studied HCoV-NL63 infection in hospitalized children diagnosed with respiratory tract infections. From November 2002 to April 2003, we evaluated 300 respiratory specimens for HCoV-NL63. Of the 300 samples, 28 (9.3%) were positive for HCoV-NL63. The highest prevalence was found in February (18%). The main symptoms were fever (61%), rhinitis (39%), bronchiolitis (39%), digestive problems (33%), otitis (28%), pharyngitis (22%), and conjunctivitis (17%). A fragment of the spike protein gene was sequenced to determine the variety of circulating HCoV-NL63. Phylogenetic analysis indicated that strains with different genetic markers cocirculate in Franc

    IRF7: activation, regulation, modification and function

    No full text
    Interferon regulatory factor 7 (IRF7) was originally identified in the context of Epstein–Barr virus (EBV) infection, and has since emerged as the crucial regulator of type I interferons (IFNs) against pathogenic infections, which activate IRF7 by triggering signaling cascades from pathogen recognition receptors (PRRs) that recognize pathogenic nucleic acids. Moreover, IRF7 is a multifunctional transcription factor, underscored by the fact that it is associated with EBV latency, in which IRF7 is induced as well as activated by the EBV principal oncoprotein latent membrane protein-1 (LMP1). Aberrant production of type I IFNs is associated with many types of diseases such as cancers and autoimmune disorders. Thus, tight regulation of IRF7 expression and activity is imperative in dictating appropriate type I IFN production for normal IFN-mediated physiological functions. Posttranslational modifications have important roles in regulation of IRF7 activity, exemplified by phosphorylation, which is indicative of its activation. Furthermore, mounting evidence has shed light on the importance of regulatory ubiquitination in activation of IRF7. Albeit these exciting findings have been made in the past decade since its discovery, many questions related to IRF7 remain to be addressed

    Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?

    No full text

    8th IAS Conference on HIV Pathogenesis, Treatment and Prevention (IAS 2015).

    No full text
    corecore