47 research outputs found

    Effects of technetium on marine micro-organisms

    Get PDF
    Eleven bacterial species have been isolated from the upper layer of intertidal sediments collected along the Belgian coast (Coxyde). Three of them (no. 1, 4 and 11) have been chosen for their halophilous character. One species has been identified as Flavobacterium halmephilum, the other two are being investigated. Effects of technetium (99Tc) have been studied on a mixed bacterial population isolated from sediments, as well as on the three halophilic species.At the concentrations utilized in this work (up to 100 microg ml-1), 99Tc has no evident effects on bacterial growth. Uptake of technetium (99Tc and/or 95mTc) has been investigated in the mixed bacterial population, in the three halophilic bacteria (including Flavobacterium halmephilum) and in the benthic ciliate Uronema marinum. It has been found that technetium is taken up by all these micro-organisms. However, the transfer factor (TF) in bacteria may vary considerably (from 0.5 to 200), but the cause of this variability is not known and deserves further study.The ciliate Uronema marinum, which feeds on living marine bacteria, was found to take up 95mTc added to the culture medium. However, the TF in this ciliate is rather low (from 1.4 to 5.5). Because it feeds on bacteria, Uronema marinum is supposed to take up technetium from water (direct contamination) as well as from contaminated bacteria (indirect contamination). Experiments with 95mTc-labeled bacterial cells might be useful, as they could indicate which form of contamination (direct or indirect) is prevailing

    Role of various microorganisms on Tc behavior in sediments.

    No full text
    Marine bacteria (Moraxella sp., Planococcus sp. and a mixed population of anaerobes) from a coastal sediment were found to concentrate Tc. Maximum concentration of this element occurred during the stationary phase of growth of the bacteria, at low redox potential. A metabolic process seems responsible for Tc concentration by bacteria, in which it binds to high molecular weight cellular constituents. Polysaccharidic polymers, which were visualized around the bacterial cells with the scanning electron microscope, might bind Tc, but direct experimental evidence in favor of this hypothesis was not yet obtained. The role of sedimentary bacteria in the behavior of Tc in the marine environment is briefly discussed. The action of sulfate-reducing microorganisms is considered

    Photoreactivity of indirubin derivatives

    No full text
    Twenty-nine analogs of indirubin, an isomer of indigo, have been synthesized to optimize its promising kinase inhibitory scaffold. These compounds being also pigmented, have been tested for their photoreactivity. Absorption maxima were between 485 nm and 560 nm. Addition of fetal calf serum induced fluorescence and time dependent absorption modifications. Appropriate illumination induced Reactive Oxygen Species (ROS) production for nineteen compounds out of twenty-nine. The relationship between fluorescence and ROS production is discussed. Six compounds showed an important toxicity on F98 cells, a murine glioma cell line. Three of these were found to be also phototoxic, as four other non-toxic compounds. All but onze phototoxic compounds were detected as ROS producers by in vitro tests. Photoreactivity assessment is important to anticipate adverse reactions for compounds that might be clinically developed. The experimental assay was found to be the only way to evaluate the photoreactivity of this family of compounds since no predictive criteria on structures could be found. Combining the vascular tumor growth inhibition induced by kinase inhibitors with the massive local blood flow arrest following photodynamic treatment may be an efficient anti-cancer strategy. These data could orientate further syntheses of either non-photoreactive compounds or compounds displaying both kinase inhibitory activity and strong phototoxicity. © The Royal Society of Chemistry and Owner Societies
    corecore