8 research outputs found

    Case Study of Bacterial Decontamination of an Aromatic and Medicinal Plant: Decontamination of Thymus Satureioides by Gamma Radiation at Low Doses and Impact on Hygienic and Physicochemical Quality

    Get PDF
    The purpose of our study is to verify the usefulness of gamma irradiation treatment at low doses (0.25, 0.5 and 1 kGy) combined to vacuum packaging on commercial teas of Thymus satureioides deliberately contaminated with Escherichia coli. The efficiency and the influence of the process on contamination level and the shelf life of the product were studied. The phenolic composition and concentration were identified in the unirradiated and irradiated thyme. The total phenolic content (TPC) was assayed by the Folin-Ciocalteu method, the individual phenolic compounds were determined by high liquid chromatography (HPLC) and the essential oil was characterized by gas chromatography coupled to mass spectroscopy (GC-MS). The plant was observed by scanning electrons microscopy and the radioactivity effect was analyzed. The results show a complete decontamination of thyme depending to the dose and the storage time. Privileged hygienic quality was found in the irradiated thyme with the highest concentrations of polyphenols. The process showed the conservation of thyme quality without any alteration of its characteristics or radioactivity effect

    Functional Properties, Antioxidant Activity, and Organoleptic Quality of Novel Biscuit Produced by Moroccan Cladode Flour “Opuntia ficus-indica”

    No full text
    This study aimed to develop a novel biscuit by supplementing cladode flour (CF) into whole-wheat flour (WWF) at different proportions 0, 25, 50, 75, and 100%. Proximate analysis revealed that CF had a high amount of ash (11.9%) and dietary fiber (41.04%). Major minerals determined by ICP-MS were calcium (4.47 g/100 g); potassium (1.25 g/100 g); magnesium (1.46 g/100 g); and trace elements such as zinc (1.77 mg/100 g), copper (0.95 mg/100 g), and selenium (148.5 μg/100 g). The analysis of total phenolics, total flavonoids, and antioxidant activity showed high values (649.88 mg gallic acid equivalents (GAE)/100 g; 399.16 mg catechin equivalent (CE)/100 g; and 72.37%, respectively). HPLC was used to identify four phenolic acids (gallic, ferulic, syringic, and caffeic acids) and only one flavonoid (rutin) in cladode flour. Biscuit hardness, L∗, and a∗ color values decreased corresponding to the incorporation level of CF. Sensory evaluation showed that the substitution level (up to 25%) is ideal to prepare an acceptable bio-biscuit. Cladode flour could be very useful for the food industry as a source of bioactive compounds with technological potential and nutritional and antioxidant properties

    Valorisation of cellulosic waste basic cactus to prepare activated carbon

    No full text
    The cellulosic waste is the most abundant material in the earth. It is considered as a renewable polymer of wood cell walls and plant cells. It is used in different fields mainly as sustainable potential precursors and it is useful for the preparing activated carbon.The purpose of this study is the valorisation and production of activated carbon from cellulose waste, old cladodes of Ficus indica cactus optunia, and the residue of prickly pear seeds after oil extraction. Preparation and characterization of activated carbon (AC) from the two wastes by chemical treatment, phosphoric acid H3PO4 at a temperature of 450 °C has shown a very good adsorption of methylene blue and iodine. This treatment illustrated an important surface area of 820 m2/g for waste seeds and more than 470 m2/g for waste cactus cladodes. Analysis by infrared and pH point of zero charge showed a basic character for both carbons active developed. Keywords: Cactus, Activated carbon, Fig tree barbarism, Chemical activatio

    Impact and Optimization of the Conditions of Extraction of Phenolic Compounds and Antioxidant Activity of Olive Leaves (<i>Moroccan picholine</i>) Using Response Surface Methodology

    No full text
    The Moroccan picholine tree’s leaves contain phenolic compounds that benefit human health. However, the amount and type of these compounds can vary based on factors such as the extraction method and conditions. This study aimed to improve phenolic compounds’ extraction while minimising harmful chemicals’ use. It has been found that using ethanol as a solvent with ultrasonic extraction is the most effective and environmentally friendly technique. Several parameters, such as the extraction time, solid/solvent ratio, and ethanol concentration as independent variables, were evaluated using a surface response method (RSM) based on the Box–Behnken design (BBD) to optimize the extraction conditions. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis and also examined using the appropriate statistical methods. In optimal conditions, the ultrasonic time, the ratio (solvent/solid) and the concentration (ethanol/water), the content of total polyphenols (TPC), total flavonoids (TFC), and antioxidant activity (by DPPH, ABTS, FRAP) were, respectively, 74.45 ± 1.22 mg EAG/g DM, 17.08 ± 1.85 mg EC/g DM, 83.45 ± 0.89% 82.85 ± 1.52%, and 85.01 ± 2.35%. The identification of phenolic compounds by chromatography coupled with mass spectrum (HPLC-MS) under optimal conditions with two successive extractions showed the presence of hydroxytyrosol, catechin, caffeic acid, vanillin, naringin, oleuropein, quercetin, and kaempferol at high concentrations

    Energetic Bio-Activation of Some Organic Molecules and Their Antioxidant Activity in the Pulp of the Moroccan Argan Tree <i>«Argania spinosa</i> L.<i>»</i>

    No full text
    Argania spinosa L. Skeels is an emblematic tree in Morocco, known worldwide for its medicinal and nutritional value. Its fruits contain kernels used to prepare an edible oil, the leaves are used to feed livestock, and its wood is used as fuel. If the oil acquires high importance, the other components of the fruit of the argan are undervalued. Our objective is to invest the waste of the argan industry. Particularly, our study aimed to assess the effect of thermal activation of argan pulp on its therapeutic value, its phenolic profile and its functional and physicochemical properties. After heat treatment, the HPLC analysis for the average total phenolic content varied from 2% to 37%, depending on temperature. The antioxidant activity was increased with heat treatment. Higher values of antioxidant activity, polyphenol and pigment content were recorded at 70 °C. Functional properties analysis indicated that water solubility index and water absorption capacity were significantly affected by heat stress. Physicochemical analysis showed that moisture content, titratable acidity and soluble solids were affected
    corecore