12,027 research outputs found

    Study of the bilinear biquadratic Heisenberg model on a honeycomb lattice via Schwinger bosons

    Get PDF
    We analyze the biquadratic bilinear Heisenberg magnet on a honeycomb lattice via Schwinger boson formalism. Due to their vulnerability to quantum fluctuations, non conventional lattices (kagome, triangular and honeycomb for example) have been cited as candidates to support spin liquid states. Such states without long range order at zero temperature are known in one-dimensional spin models but their existence in higher dimensional systems is still under debate. Biquadratic interaction is responsible for various possibilities and phases as it is well-founded for one-dimensional systems. Here we have used a bosonic representation to study the properties at zero and finite low temperatures of the biquadratic term in the two-dimensional hexagonal honeycomb lattice. The results show a ordered state at zero temperature but much more fragile than that of a square lattice; the behavior at finite low temperatures is in accordance with expectations.Comment: 14 pages, 5 figure

    Type II and heterotic one loop string effective actions in four dimensions

    Get PDF
    We analyze the reduction to four dimensions of the R^4 terms which are part of the ten-dimensional string effective actions, both at tree level and one loop. We show that there are two independent combinations of R^4 present, at one loop, in the type IIA four dimensional effective action, which means they both have their origin in M-theory. The d=4 heterotic effective action also has such terms. This contradicts the common belief thathere is only one R^4 term in four-dimensional supergravity theories, given by the square of the Bel-Robinson tensor. In pure N=1 supergravity this new R^4 combination cannot be directly supersymmetrized, but we show that, when coupled to a scalar chiral multiplet (violating the U(1) RR-symmetry), it emerges in the action after elimination of the auxiliary fields.Comment: v2: 22 pages. Discussion on the new R^4 term and extended supergravity has been abridged and improved. Published versio

    One loop superstring effective actions and N=8 supergravity

    Full text link
    In a previous article we have shown the existence of a new independent R^4 term, at one loop, in the type IIA and heterotic effective actions, after reduction to four dimensions, besides the usual square of the Bel-Robinson tensor. It had been shown that such a term could not be directly supersymmetrized, but we showed that was possible after coupling to a scalar chiral multiplet. In this article we study the extended (N=8) supersymmetrization of this term, where no other coupling can be taken. We show that such supersymmetrization cannot be achieved at the linearized level. This is in conflict with the theory one gets after toroidal compactification of type II superstrings being N=8 supersymmetric. We interpret this result in face of the recent claim that perturbative supergravity cannot be decoupled from string theory in d>=4, and N=8, d=4 supergravity is in the swampland.Comment: 28 pages, no figure

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Efficient generation of graph states for quantum computation

    Full text link
    We present an entanglement generation scheme which allows arbitrary graph states to be efficiently created in a linear quantum register via an auxiliary entangling bus. The dynamics of the entangling bus is described by an effective non-interacting fermionic system undergoing mirror-inversion in which qubits, encoded as local fermionic modes, become entangled purely by Fermi statistics. We discuss a possible implementation using two species of neutral atoms stored in an optical lattice and find that the scheme is realistic in its requirements even in the presence of noise.Comment: 4 pages, 3 figures, RevTex 4; v2 - Major changes and new result

    Energy in an Expanding Universe in the Teleparallel Geometry

    Get PDF
    The main purpose of this paper is to explicitly verify the consistency of the energy-momentum and angular momentum tensor of the gravitational field established in the Hamiltonian structure of the Teleparallel Equivalent of General Relativity (TEGR). In order to reach these objectives, we obtained the total energy and angular momentum (matter plus gravitational field) of the closed universe of the Friedmann-Lemaitre-Robertson-Walker (FLRW). The result is compared with those obtained from the pseudotensors of Einstein and Landau-Lifshitz. We also applied the field equations (TEGR) in an expanding FLRW universe. Considering the stress energy-momentum tensor for a perfect fluid, we found a teleparallel equivalent of Friedmann equations of General Relativity (GR).Comment: 19 pages, no figures. Revised in view of Referee's comments. Version to appear in the Brazilian Journal of Physic
    • …
    corecore