5,763 research outputs found

    Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities

    Get PDF
    Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal

    Checking Interaction-Based Declassification Policies for Android Using Symbolic Execution

    Get PDF
    Mobile apps can access a wide variety of secure information, such as contacts and location. However, current mobile platforms include only coarse access control mechanisms to protect such data. In this paper, we introduce interaction-based declassification policies, in which the user's interactions with the app constrain the release of sensitive information. Our policies are defined extensionally, so as to be independent of the app's implementation, based on sequences of security-relevant events that occur in app runs. Policies use LTL formulae to precisely specify which secret inputs, read at which times, may be released. We formalize a semantic security condition, interaction-based noninterference, to define our policies precisely. Finally, we describe a prototype tool that uses symbolic execution to check interaction-based declassification policies for Android, and we show that it enforces policies correctly on a set of apps.Comment: This research was supported in part by NSF grants CNS-1064997 and 1421373, AFOSR grants FA9550-12-1-0334 and FA9550-14-1-0334, a partnership between UMIACS and the Laboratory for Telecommunication Sciences, and the National Security Agenc

    Mapeamento das épocas aptas para o plantio de milho consorciado com braquiária na segunda safra agrícola no Brasil.

    Get PDF
    bitstream/item/95971/1/circ-187.pd

    Proving Safety with Trace Automata and Bounded Model Checking

    Full text link
    Loop under-approximation is a technique that enriches C programs with additional branches that represent the effect of a (limited) range of loop iterations. While this technique can speed up the detection of bugs significantly, it introduces redundant execution traces which may complicate the verification of the program. This holds particularly true for verification tools based on Bounded Model Checking, which incorporate simplistic heuristics to determine whether all feasible iterations of a loop have been considered. We present a technique that uses \emph{trace automata} to eliminate redundant executions after performing loop acceleration. The method reduces the diameter of the program under analysis, which is in certain cases sufficient to allow a safety proof using Bounded Model Checking. Our transformation is precise---it does not introduce false positives, nor does it mask any errors. We have implemented the analysis as a source-to-source transformation, and present experimental results showing the applicability of the technique

    A Formalized Extension of the Substitution Lemma in Coq

    Full text link
    The substitution lemma is a renowned theorem within the realm of lambda-calculus theory and concerns the interactional behaviour of the metasubstitution operation. In this work, we augment the lambda-calculus's grammar with an uninterpreted explicit substitution operator, which allows the use of our framework for different calculi with explicit substitutions. Our primary contribution lies in verifying that, despite these modifications, the substitution lemma continues to remain valid. This confirmation was achieved using the Coq proof assistant. Our formalization methodology employs a nominal approach, which provides a direct implementation of the alpha-equivalence concept. The strategy involved in variable renaming within the proofs presents a challenge, specially on ensuring an exploration of the implications of our extension to the grammar of the lambda-calculus.Comment: In Proceedings FROM 2023, arXiv:2309.1295

    On the multiplicity of the hyperelliptic integrals

    Full text link
    Let I(t)=δ(t)ωI(t)= \oint_{\delta(t)} \omega be an Abelian integral, where H=y2xn+1+P(x)H=y^2-x^{n+1}+P(x) is a hyperelliptic polynomial of Morse type, δ(t)\delta(t) a horizontal family of cycles in the curves {H=t}\{H=t\}, and ω\omega a polynomial 1-form in the variables xx and yy. We provide an upper bound on the multiplicity of I(t)I(t), away from the critical values of HH. Namely: $ord\ I(t) \leq n-1+\frac{n(n-1)}{2}if if \deg \omega <\deg H=n+1.Thereasoninggoesasfollows:weconsidertheanalyticcurveparameterizedbytheintegralsalong. The reasoning goes as follows: we consider the analytic curve parameterized by the integrals along \delta(t)ofthe of the nPetrovformsof ``Petrov'' forms of H(polynomial1formsthatfreelygeneratethemoduleofrelativecohomologyof (polynomial 1-forms that freely generate the module of relative cohomology of H),andinterpretthemultiplicityof), and interpret the multiplicity of I(t)astheorderofcontactof as the order of contact of \gamma(t)andalinearhyperplaneof and a linear hyperplane of \textbf C^ n.UsingthePicardFuchssystemsatisfiedby. Using the Picard-Fuchs system satisfied by \gamma(t),weestablishanalgebraicidentityinvolvingthewronskiandeterminantoftheintegralsoftheoriginalform, we establish an algebraic identity involving the wronskian determinant of the integrals of the original form \omegaalongabasisofthehomologyofthegenericfiberof along a basis of the homology of the generic fiber of H.Thelatterwronskianisanalyzedthroughthisidentity,whichyieldstheestimateonthemultiplicityof. The latter wronskian is analyzed through this identity, which yields the estimate on the multiplicity of I(t).Still,insomecases,relatedtothegeometryatinfinityofthecurves. Still, in some cases, related to the geometry at infinity of the curves \{H=t\} \subseteq \textbf C^2,thewronskianoccurstobezeroidentically.Inthisalternativeweshowhowtoadapttheargumenttoasystemofsmallerrank,andgetanontrivialwronskian.Foraform, the wronskian occurs to be zero identically. In this alternative we show how to adapt the argument to a system of smaller rank, and get a nontrivial wronskian. For a form \omegaofarbitrarydegree,weareledtoestimatingtheorderofcontactbetween of arbitrary degree, we are led to estimating the order of contact between \gamma(t)andasuitablealgebraichypersurfacein and a suitable algebraic hypersurface in \textbf C^{n+1}.Weobservethat. We observe that ord I(t)growslikeanaffinefunctionwithrespectto grows like an affine function with respect to \deg \omega$.Comment: 18 page
    corecore