3 research outputs found
Graded changes in enamel component volumes resulted from a short tooth bleaching procedure
AbstractAimTo test the hypothesis that changes in enamel component volumes (mineral, organic, and water volumes, and permeability) are graded from outer to inner enamel after a short bleaching procedure.Materials and methodsExtracted unerupted human third molars had half of their crowns bleached (single bleaching session, 3×15min), and tooth shade changes in bleached parts were analyzed with a spectrophotometer. Ground sections were prepared, component volumes and permeability were quantified at histological points located at varying distances from the enamel surface (n=10 points/location), representing conditions before and after bleaching.ResultsTooth shade changes were significant (p<0.001; 95% CI=−1/−8; power=99%), and most of the enamel layer was unaffected after bleaching, except at the outer layers. Multiple analysis of covariances revealed that most of the variance of the change in enamel composition after bleaching was explained by the combination of the set of types of component volume (in decreasing order of relevance: mineral loss, organic gain, water gain, and decrease in permeability) with the set of distances from the enamel surface (graded from the enamel surface inward) (canonical R2=0.97; p<0.0001; power>99%).ConclusionsChanges in enamel composition after a short bleaching procedure followed a gradient within component volumes (mineral loss>organic gain>water gain>decrease in permeability) and decreased from the enamel surface inward
Histological analysis of biocompatibility of ionomer cements with an acid-base reaction
The purpose of this study was to evaluate the inflammatory and cure events of acid-based reactions using glass ionomer cement used for cementation of crowns, bridges, onlays and orthodontic bands implanted in subcutaneous tissue, at different time intervals. A total of 48 male Wistar rats were used, distributed into 4 groups (n = 12), as follows: Group C (control, polyethylene), Group ME (Meron), Group KC (Ketac Cem) and Group PR (Precedent). The animals were sacrificed after time intervals of 7, 15 and 30 days, and their tissues were analyzed under an optical microscope for such events as inflammatory infiltrate, edema, necrosis, granulation tissue, multinucleated giant cells, young fibroblasts and collagen. The results was assessed using Kruskal-Wallis and Dunn's tests (p < 0.05). In the initial period, intense inflammatory infiltrate was observed for all the materials with no significant difference among them (p = 0.104). Groups PR and KC showed significant difference in relation to Group C, at 7 days (p = 0.025) and 15 days (p = 0.006). Edema and giant cells were more expressive in Group ME, differing significantly from Groups C (p = 0.023) and KC (p = 0.039), respectively, at 7 days. Group ME showed a statistically significant difference in relation to Groups PR and KC for the presence of young fibroblasts (p = 0.009) and for collagen (p = 0.002), at 7 days. Within the limits of this in vivo study, Precedent and Ketac Cem glass ionomer cements showed better tissue healing with a greater number of fibroblasts and collagen, as compared to Meron