5 research outputs found

    Late Winter Biogeochemical Conditions Under Sea Ice in the Canadian High Arctic

    Get PDF
    With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2) uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W) in the Canadian High Arctic. Results show relatively low surface water (1–10 m) nitrate (<1.3 µM) and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1), total alkalinity (mean±SD=2134±11.09 µmol kg−1) and under-ice pCO2sw (mean±SD=286±17 µatm). These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season

    Restoration of Deadwood as a Critical Microhabitat in Forest Landscapes

    No full text

    Dead wood in European beech (Fagus sylvatica) forest reserves

    No full text
    Data were analysed on the volume of dead wood in 86 beech forest reserves, covering most of the range of European beech forests. The mean volume was 130 m3/ha and the variation among reserves was high, ranging from almost nil to 550 m3/ha. The volume depended significantly on forest type, age since reserve establishment and volume of living wood. More dead wood was found in montane (rather than lowland/submontane) reserves, longer-established reserves (time since designation) and reserves with higher volumes of living wood. On average, fallen dead wood contributed more to the total dead wood volume than standing dead wood. The percentage of dead wood that was standing was almost twice as high in montane than in lowland/submontane forest reserves (45% versus 25%). The volume of dead wood at selected sites changed considerably over time. The fluctuations were significantly higher in lowland/submontane than montane reserves, possibly connected with differences in the disturbance regimes and especially damage caused by windstorms. In NW Europe, the blow down of formerly managed, even-aged stands led to extraordinary high volumes of dead wood shortly after reserve establishment. The implications for forest management and biodiversity conservation are discussed. An increase in dead wood volumes must be carried out in accordance with the local/regional forest type and disturbance regime. Thus, in order to fulfil the requirements of as many wood-depending organisms as possible, it is important to preserve not only larger amounts of dead wood, but also dead wood of different types and dimensions as well as securing a long-term continuity of dead wood
    corecore