226 research outputs found

    IL-10 production in macrophages is regulated by a TLR-driven CREB-mediated mechanism that is linked to genes involved in cell metabolism

    Get PDF
    IL-10 is produced by macrophages in diverse immune settings and is critical in limiting immune-mediated pathology. In helminth infections, macrophages are an important source of IL-10; however, the molecular mechanism underpinning production of IL-10 by these cells is poorly characterized. In this study, bone marrow–derived macrophages exposed to excretory/secretory products released by Schistosoma mansoni cercariae rapidly produce IL-10 as a result of MyD88-mediated activation of MEK/ERK/RSK and p38. The phosphorylation of these kinases was triggered by TLR2 and TLR4 and converged on activation of the transcription factor CREB. Following phosphorylation, CREB is recruited to a novel regulatory element in the Il10 promoter and is also responsible for regulating a network of genes involved in metabolic processes, such as glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Moreover, skin-resident tissue macrophages, which encounter S. mansoni excretory/secretory products during infection, are the first monocytes to produce IL-10 in vivo early postinfection with S. mansoni cercariae. The early and rapid release of IL-10 by these cells has the potential to condition the dermal microenvironment encountered by immune cells recruited to this infection site, and we propose a mechanism by which CREB regulates the production of IL-10 by macrophages in the skin, but also has a major effect on their metabolic state

    CD4+ T cell hyporesponsiveness after repeated exposure to Schistosoma mansoni larvae is dependent upon interleukin-10

    Get PDF
    The effect that multiple percutaneous exposures to Schistosoma larvae has on the development of early CD4+ lymphocyte reactivity is unclear, yet it is important in the context of humans living in areas where schistosomiasis is endemic. In a murine model of multiple infections, we show that exposure of mice to repeated doses (4×) of Schistosoma mansoni cercariae, compared to a single dose (1×), results in CD4+ T cell hyporesponsiveness within the skin-draining lymph nodes (sdLN), manifested as reduced CD4+ cell proliferation and cytokine production. FoxP3+ CD4+ regulatory T cells were present in similar numbers in the sdLN of 4× and 1× mice and thus are unlikely to have a role in effecting hyporesponsiveness. Moreover, anergy of the CD4+ cell population from 4× mice was slight, as proliferation was only partly circumvented through the in vitro addition of exogenous interleukin-2 (IL-2), and the in vivo blockade of the regulatory molecule PD1 had a minimal effect on restoring responsiveness. In contrast, IL-10 was observed to be critical in mediating hyporesponsiveness, as CD4+ cells from the sdLN of 4× mice deficient for IL-10 were readily able to proliferate, unlike those from 4× wild-type cohorts. CD4+ cells from the sdLN of 4× mice exhibited higher levels of apoptosis and cell death, but in the absence of IL-10, there was significantly less cell death. Combined, our data show that IL-10 is a key factor in the development of CD4+ T cell hyporesponsiveness after repeated parasite exposure involving CD4+ cell apoptosis

    Sm16, a major component of Schistosoma mansoni cercarial excretory/secretory products, prevents macrophage classical activation and delays antigen processing

    Get PDF
    Background: Schistosoma mansoni cercariae penetrate the skin by releasing excretory/secretory (E/S) products known as 0-3hRP, which are associated with immune modulation through Toll like receptor (TLR) signaling. Furthermore, these secretions contain Sm16, which when given to cells as a recombinant protein inhibits human monocyte derived cytokine responses to TLR4 and TLR3 ligands. Nonetheless, the extent and mechanism(s) of these inhibitory effects remain largely uncharacterized. Methods: Murine bone marrow derived macrophages were exposed to different fractions of 0-3hRP, obtained via ultracentrifugation, or recombinant Sm16. These cells were exposed to the parasite molecules in combination with different TLR ligands, or Interferon gamma, and tested for the production of the cytokines IL-10 and IL-12p40, and their ability to process antigen. Results: The immunomodulatory function of 0-3hRP is enriched predominantly in the pellet fraction, which contains a greater proportion of Sm16, also corroborating the ability of recombinant Sm16 to inhibit macrophage activation in response to TLR ligands. We further demonstrate that Sm16 blocks classical activation of macrophages to LPS or IFN-¿ stimulation in vitro, and that inhibition of macrophage classical activation is independent of TLR2 recognition. Finally we show that Sm16 shares the altered intracellular processing observed for 0-3hRP, and is able to delay antigen processing by macrophages. Conclusions: Collectively, our findings show that Sm16 is a major component of S. mansoni cercarial E/S products, and is partly responsible for its immune-regulatory properties. Moreover, we propose that the mechanism employed by Sm16 to exert its inhibitory function is likely to be linked with alteration of endosomal trafficking and is not dependent on particular TLR receptors. Finally, we suggest that accumulation of Sm16 in the skin after percutaneous infection with S. mansoni cercariae could contribute to limiting dermal inflammation

    Investigations of nuclear reactions relevant to stellar γ-ray emission

    Get PDF
    The detection of γ-rays from explosive astrophysical scenarios such as novae provides an excellent opportunity for the study of on-going nucleosynthesis in the Universe. Within this context, this work has addressed an uncertainty in the destruction rate of the 18F nucleus, thought to be the primary source of 511 keV γ-rays from novae. A direct measurement of the 18F(p,α )15O cross section has provided the opportunity to extract resonance parameters through the R-Matrix formalism. The inferred parameters of populated states in 19Ne include the observation of a broad 1/2+ state, consistent with a recent theoretical prediction, which will have a significant impact on the rate of destruction of this γ-ray producing radioisotope. The 18O(p,α )15N reaction follows similar nuclear and kinematic processes and is expected to occur in the hydrogen burning layers of AGB stars. Resonance widths have been extracted from a direct measurement in the region around a poorly constrained broad state close to the Gamow window. This has produced a new parameter set for future reference and provides new information on the reaction rate. The complex R-Matrix formalism used in these analyses is a crucial tool in the study of nuclear astrophysics reactions, and many codes have been written to implement the complex mathematics. This thesis presents a comparison of two publicly available codes from the JINA collaboration and a code used extensively by the University of Edinburgh. For this, the recent results of the 18F destruction reaction, presented here, have been used. A minor error was found within one of the codes, and corrected. The final parameters extracted, and the resulting cross sections calculations, are shown to be consistent between the three codes. A further γ-ray line of interest at 1.809 MeV, characteristic of 26Al decay, has been observed throughout the interstellar medium. If, however, this isotope is formed in a known isomeric state, its decay bypasses the emission of this γ-ray, thus complicating the interpretation of observed γ-ray fluxes. To this end, an experiment has been carried out, providing proof of principle of a direct measurement of the 26mAl(p,γ)27Si reaction. The calculation of the isomeric intensity is presented here

    Meadows and more: a botanical journal of five days on the Uists, Benbecula and Eriskay

    Get PDF
    In the first week of July 2018, the Floodplain Meadows Partnership (FMP) held its annual steering group meeting with field excursions on the Outer Hebrides. The aim of the field part of our meeting was to familiarise ourselves with wet meadows (including those on machair) of the Uists and Benbecula, and compare their composition and ecology with related habitats further south in the UK. However, a chance for us to explore the other habitats of these islands was too good an opportunity to miss. Hence five of us arrived on the islands a few days before the main group and roamed more extensively, looking at a wide range of habitats in addition to meadows. The lead author’s role in this botanical journal was to note incidental observations made in addition to the formal study of the meadows. Hilary Wallace directed the quadrat recording in wet meadows, and the overall programme of work was coordinated by David Gowing and Emma Rothero of the Open University. Even during the FMP field excursions, we could not ignore other habitats entirely and Stewart Clarke (National Trust Freshwaters and Estuaries Specialist) paid special attention to the aquatic flora

    (S)-(−)-Fluorenylethylchloroformate (FLEC) ; preparation using asymmetric transfer hydrogenation and application to the analysis and resolution of amines

    Get PDF
    Fluorenylethylchoroformate (FLEC) is a valuable chiral derivatisation reagent that is used for the resolution of a wide variety of chiral amines. Herein, we describe an improved preparation of (S)-(−)-FLEC using an efficient asymmetric catalytic transfer hydrogenation as the key step. We also demonstrate the application of FLEC as a chiral Fmoc equivalent for chiral resolution, with facile deprotection, of tetrahydroquinaldines, and its capacity for inducing regioselective outcomes in nitration reactions

    Nicotinamide N-methyltransferase catalyses the N-methylation of the endogenous ß-carboline norharman: evidence for a novel detoxification pathway

    Get PDF
    Nicotinamide N-methyltransferase (NNMT) is responsible for the N-methylation of nicotinamide to 1-methylnicotinamide. Our recent studies have demonstrated that NNMT regulates cellular processes fundamental to the correct functioning and survival of the cell. It has been proposed that NNMT may possess β-carboline (BC) N-methyltransferase activity, endogenously and exogenously produced pyridine-containing compounds which, when N-methylated, are potent inhibitors of Complex I and have been proposed to have a role in the pathogenesis of Parkinson's disease. We have investigated the ability of recombinant NNMT to N-methylate norharman (NH) to 2-N-methylnorharman (MeNH). In addition, we have investigated the toxicity of the BC NH, its precursor 1,2,3,4-tetrahydronorharman (THNH) and its N-methylated metabolite MeNH, using our in vitro SH-SY5Y NNMT expression model. Recombinant NNMT demonstrated NH 2N-methyltransferase activity, with a Km of 90 ± 20 µM, a kcat of 3 × 10(-4) ± 2 × 10(-5) s(-1) and a specificity constant (kcat/Km) of 3 ± 1 s(-1) M(-1) THNH was the least toxic of all three compounds investigated, whereas NH demonstrated the greatest, with no difference observed in terms of cell viability and cell death between NNMT-expressing and non-expressing cells. In NNMT-expressing cells, MeNH increased cell viability and cellular ATP concentration in a dose-dependent manner after 72 and 120 h incubation, an effect that was not observed after 24 h incubation or in non-NNNT-expressing cells at any time point. Taken together, these results suggest that NNMT may be a detoxification pathway for BCs such as NH

    Memoria de actividades: Año 2005

    Get PDF
    Purpose: In Bornholm eye disease, a defect in the splicing of transcripts from a variant OPN1LW opsin gene leads to a depletion in spliced transcript levels and, consequently, a reduction in photopigment in photoreceptors expressing the variant gene. Methods: Myopic and age-matched control subjects were drawn from the Western Australian Pregnancy Cohort (Raine) Study and the Norfolk Island Eye Study groups. The OPN1LW opsin gene was amplified using long-range PCR methodology and was fully sequenced. Expression of variant opsins was evaluated using quantitative PCR (qPCR). RNA secondary structure changes arising from identified variants were predicted by modeling. Results: Forty-two nucleotide sites were found to vary across the 111 subjects studied. Of these, 15 had not been previously reported, with three present only in myopic individuals. Expression of these variants in transfected human embryonic kidney (HEK293T) cells demonstrated that splicing efficiencies were not affected. However, gene transcripts from two of the three variants were significantly depleted. RNA secondary structure modeling predicted that these single nucleotide changes could affect RNA stability. Conclusions: None of the variants identified in myopic individuals appeared to alter the efficiency of transcript splicing. However, two resulted in a significant reduction in the number of spliced and unspliced transcripts, indicating an overall reduction in steady-state transcript stability. Such a change would be expected to result in a reduced amount of photopigment, and this may be a contributing factor in the development of myopia.</p
    • …
    corecore