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RESEARCH Open Access

Sm16, a major component of Schistosoma

mansoni cercarial excretory/secretory products,
prevents macrophage classical activation and
delays antigen processing
David E Sanin and Adrian P Mountford*

Abstract

Background: Schistosoma mansoni cercariae penetrate the skin by releasing excretory/secretory (E/S) products

known as 0-3hRP, which are associated with immune modulation through Toll like receptor (TLR) signalling.

Furthermore, these secretions contain Sm16, which when given to cells as a recombinant protein inhibits human

monocyte derived cytokine responses to TLR4 and TLR3 ligands. Nonetheless, the extent and mechanism(s) of these

inhibitory effects remain largely uncharacterized.

Methods: Murine bone marrow derived macrophages were exposed to different fractions of 0-3hRP, obtained via

ultracentrifugation, or recombinant Sm16. These cells were exposed to the parasite molecules in combination with

different TLR ligands, or Interferon gamma, and tested for the production of the cytokines IL-10 and IL-12p40, and

their ability to process antigen.

Results: The immunomodulatory function of 0-3hRP is enriched predominantly in the pellet fraction, which

contains a greater proportion of Sm16, also corroborating the ability of recombinant Sm16 to inhibit macrophage

activation in response to TLR ligands. We further demonstrate that Sm16 blocks classical activation of macrophages

to LPS or IFN-γ stimulation in vitro, and that inhibition of macrophage classical activation is independent of TLR2

recognition. Finally we show that Sm16 shares the altered intracellular processing observed for 0-3hRP, and is able

to delay antigen processing by macrophages.

Conclusions: Collectively, our findings show that Sm16 is a major component of S. mansoni cercarial E/S products,

and is partly responsible for its immune-regulatory properties. Moreover, we propose that the mechanism employed

by Sm16 to exert its inhibitory function is likely to be linked with alteration of endosomal trafficking and is not

dependent on particular TLR receptors. Finally, we suggest that accumulation of Sm16 in the skin after percutaneous

infection with S. mansoni cercariae could contribute to limiting dermal inflammation.

Keywords: Helminths, Macrophages, Toll like receptors, Schistosoma mansoni, Cercarial excretory/secretory

products, Macrophage activation

Background

Schistosoma mansoni cercariae penetrate the skin by re-

leasing excretory/secretory (E/S) products derived from

the post and pre-acetabular glands of the parasite [1-3]

which aid migration of larvae through the skin to reach

blood vessels, thereby facilitating infection of the host

[4,5]. S. mansoni cercarial E/S products contain more

than 50 different proteins [1,6], and are largely released

within the first three hours after transformation, hence

this preparation has been termed 0–3 hour released

preparation (0-3hRP) [7]. These molecules are the first

parasite-derived material encountered by innate immune

cells (e.g. macrophages, neutrophils, and dendritic cells)

in the skin and as such constitute the first line of defense

against invading parasites. For example, macrophages in
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the skin take up secreted S. mansoni E/S products [3].

These secretions also induce a strong cytokine response

from macrophages in a Toll like receptor (TLR) dependent

manner [7] and are retained in early endosomes for longer

than other immunogenic stimuli [3] suggesting that 0-

3hRP conditions the way immune cells affect their envir-

onment and process phagocytized material [8].

The constituent(s) of 0-3hRP responsible for its poten-

tial immunomodulatory function are not known but sev-

eral constituent molecules have theoretical roles [1,2].

Enzymes which allow remodeling of extracellular matrix

necessary for parasite penetration of the skin are some

of the most frequently identified proteins, of which the

best studied is cercarial elastase with chymotrypsin ac-

tivity enabling it to break skin elastin [5]. However, at

least seven other elastases are secreted by larvae into the

skin, alongside five metalloproteases, one of which is

Invadolysin [2]. The only protein in 0-3hRP with a defined

immunological function is Sm16 (Smp_113760), which is

able to induce cell apoptosis if it reaches the cytosol [9],

and effectively blocks signalling downstream of TLR4 and

TLR3 in human monocytic cell lines [10]. Sm16 is

expressed between the late developmental stage of the

sporocyst in the intermediate molluscan host and the

invading larvae, disappearing after 48 h of skin penetra-

tion [11]. Sm16 interference with cytokine responses by

human monocytes is upstream of IRAK1 activation and

NF-κB signalling [10], indicating that it’s functions

occur in close association with the earliest events of

TLR signal transduction.

0-3hRP is recognized by TLRs, whilst Sm16 is known

to inhibit the function of these receptors [7,10]. Conse-

quently, we investigated the distribution and function of

Sm16 in different fractions of S. mansoni cercarial E/S

products. The immunomodulatory function of 0-3hRP is

enriched predominantly in its pellet fraction and we

show that this fraction retains a greater proportion of

Sm16 than the soluble fraction. We corroborate the abil-

ity of this protein to inhibit macrophage activation in re-

sponse to TLR ligands, and further demonstrate that

Sm16 is able to block classical activation of macrophages

in vitro and that it functions independently of TLR2

recognition. Finally, we determine that Sm16 shares the

altered intracellular processing as seen with 0-3hRP, and

has the potential to delay antigen processing. Collect-

ively, our findings show that Sm16 is a major compo-

nent of S. mansoni cercarial E/S products, with this

protein being partly responsible for the regulatory func-

tion of these secretions.

Methods

Parasites and parasite-derived material

The life cycle of a Puerto Rican strain of Schistosoma

mansoni (S. mansoni) was maintained in outbred NMR-I

mice and Biomphalariaglabrata snails. Infective cer-

cariae were obtained following exposure of snails with a

patent infection to incandescent light for 2 h to induce

the release of the parasites. Cercarial E/S products were

produced as described previously [1,3,7]. Briefly, culture

supernatants containing the 0–3 hour released prepar-

ation (0-3hRP) were collected (ensuring whole larvae and

parasite tails were discarded), and stored at −20°C until re-

quired. Pooled supernatants were concentrated using filter

spin columns with a molecular weight cut off of 3 kDa

(GE Life Sciences) and the protein content measured

using the BCA® protein assay (Thermo Scientific).

Recombinant Sm16 (rSm16), unlabelled or labelled with

AlexaFluor® 546, was a gift from Dr Martin Gullberg, Umeå

University, Sweden [9,10].

Fractionation of 0-3hRP

0-3hRP was fractionated by centrifugation at 100,000 g

for 1 hour at 4°C into a soluble preparation and a pellet.

The soluble 0-3hRP preparation was denoted 0-3hRPS,

whilst the pellet re-suspended using a vortex in an equiva-

lent volume of PBS was denoted 0-3hRPP. The protein

content of both preparations was quantified as specified

above.

SDS polyacrylamide gel electrophoresis (PAGE)

0-3hRP and its fractions were separated by SDS-PAGE

under reducing conditions (1x NuPAGE® Sample Reducing

Agent; Life Technologies) on 4-12% NuPAGE® Bis-Tris

Precast gels (Life Technologies) for 2 h at 200 V in 1xNu-

PAGE® MOPS SDS Running Buffer (Life Technologies).

Gels were stained over-night using Brilliant Blue G con-

centrate (SIGMA), and imaged using a GelDoc® and Ima-

geLab® by Biorad.

Selected protein bands were identified by tandem mass

spectrometry (MS/MS) by the Proteomics division of the

Bioscience Technology Facility (University of York, York,

UK) using a Matrix assisted laser desorption ionization

(MALDI)-MS and MS/MS are performed using a Bruker

ultraflex III MALDI-Time of flight (TOF)/TOF.

Western blot analysis

0-3hRP fractions and rSm16 were transferred after SDS-

PAGE onto nitrocellulose membranes using an iBlot®

Transfer Stack (Life Technologies). The membranes were

then processed using the SnapID® system (Millipore)

blocked with PBS containing 1% BSA, incubated first with

rabbit anti-rSm16 antibody (1:5000) (gift from Dr Martin

Gullberg, Umeå University, Sweden) for 10 min, and

then goat anti rabbit antibody (1:30000) conjugated to

horseradish peroxidase (Abcam). SuperSignal® West Pico

chemiluminescence reagent (Thermo Scientific) was used

to reveal labelled proteins using X-ray film imaging (GE

Healthcare).
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Animals

All animals were bred and maintained in the Biological

Services Facility at the Department of Biology, University

of York, according to the standards laid out in the Ani-

mal’s Scientific Procedures Act 1986, and housed in filter-

topped cages under specific pathogen free conditions. The

University of York Ethics committee approved all experi-

mental work. Aged matched female C57BL/6 strain, or

TLR2 deficient (TLR2−/−) [12] mice between 6–10 weeks

old were used for all experimental procedures.

In vitro culture and stimulation of murine bone marrow-

derived macrophages

Bone marrow from both femurs and tibias was flushed

with PBS using a 25G needle and the resulting cell suspen-

sions filtered to remove bone and tissue debris. Aliquots

of 5×106 cells were re-suspended in DMEM® medium

(Gibco) containing 10% FCS, 2 mM L-glutamine (Gibco),

1% Pen/Strep (Gibco) and 50 μM 2-mercaptoethanol

(complete DMEM), supplemented with macrophage col-

ony stimulating factor (M-CSF) obtained from culture su-

pernatants of L929 murine fibroblast cell line. Bone

marrow cell suspensions were cultured at 37°C and 5%

CO2 in 10 cm culture dishes for 7 days prior to the collec-

tion of adherent cells which were re-suspended in

complete DMEM and subsequently used as bone marrow

derived macrophages (BMMΦs). Stimulation assays were

performed on 1×105 BMMϕs/well (96 well plate) in 200 μl

of complete DMEM, containing different concentra-

tions of parasite-derived material, or recombinant Sm16

(rSm16). BMMϕs were stimulated in the same manner

with 1 ng/ml lipopolysaccharide (LPS) (SIGMA-ALDRICH,

from Escherichia coli 0111:B4), 25 μg/ml Polyinosinic:poly-

cytidylic acid (Poly I:C) (SIGMA-ALDRICH) and 5 μg/ml

Pam3CSK4 (InvivoGen).

Flow cytometry

BMMϕs were incubated in round bottom 96 well plates

with neat goat serum and 1 μg anti CD16/CD32 mono-

clonal antibody (mAb) (eBiosciense), for 10 min at 4°C

to prevent non-specific mAb binding to Fc-receptors.

Cells were then labelled with mAb against F4/80 (BM8),

CD11b (M1/70), CD11c (HL3) and MHC-II (M5/114)

(all eBiosciences) in 10 μl of 1% FCS in PBS (FACS buf-

fer) for 30-45 min at 4°C. Cells were washed and then

subject to immediate acquisition by flow cytometry, or

fixed in 100 μl 2% paraformaldehyde (PFA) in PBS to en-

able acquisition at a later point. Antigen processing as-

says were carried out by exposing rSm16 treated or

control BMMϕs to 100 AlexaFluor®488 conjugated E.

coli BioParticles® (Life technologies) per cell for varying

lengths of time. Cells were then fixed as described above

and analysed by flow cytometry. All flow cytometry was

acquired using the Cyan ADP analyser (DakoCytomation,

Stockport, UK). Data was analysed using FlowJo software

v7.6.5 (Tree Star, Inc, Ashland, Oregon, USA).

Enzyme linked immune absorbent assays

Culture supernatants were collected from in vitro BMMϕs

cultures after 24 hours, as described above, for cytokine

analysis. The amounts of IL-10 and IL-12p40 were deter-

mined using DuoSet ELISA kits (R&D Systems).

Griess assay

The amount of nitrite as an indirect product of the pro-

duction of NO, was measured using Griess Reagent kit

(Life Technologies). Briefly, culture supernatants were

incubated for 30 min with Griess reagent, alongside a

standard curve supplied by the manufacturer. Absorb-

ance was measured at 550 nm, and concentrations esti-

mated based on the standard curve.

Confocal microscopy of BMMΦs exposed to fluorescently

labelled rSm16

BMMΦs were allowed to adhere to glass cover slips for two

hours in 24 well plates (1×106 cells/well) and then exposed

to labelled rSm16 (50 μg/ml) and/or Fluorescein isothio-

cyanate (FITC) conjugated DEXTRAN (DEXTRANFITC)

(SIGMA) for different periods of time. After washing, cells

were fixed on to the cover slips for 20 min with 4% PFA in

PBS at room temperature. Cells were then incubated with

DAPI (2 μg/ml) (SIGMA) for 5 min, mounted onto a glass

microscope slide using Prolong® Gold (Life technologies),

sealed with nail varnish, and finally imaged.

Alternatively, cover slips were placed in 0.05% saponin

0.2% BSA (staining buffer) for 30 min at room temperature

and then incubated for 1 hour with polyclonal rabbit anti-

body against Early endosome antigen (EEA)-1 (Abcam)

(1:200). Cover slips were washed 3x and then probed for

1 hour with goat anti-rabbit Alexa Fluor® 488 (Life tech-

nologies) (1:1000). Finally, cover slips were washed twice

with DAPI (2 μg/ml) included in the second washing

step. After rinsing with deionized water, cover slips were

mounted on glass slides using Prolong® Gold as above.

All images were acquired using a Zeiss LSM 710 invert

microscope using ZEN microscope software.

Statistical analysis

Analysis of Variance (ANOVA) and multiple comparisons

tests (Two tailed T-test, Tukey’s, Sidak’s and Bonferroni’s)

were performed to establish statistically significant differ-

ences between the groups (* = p < 0.05, ** = p < 0.01; *** =

p < 0.001, **** = p < 0.0001) using the software package

GraphPad Prism®. Error bars represent the standard error

of the mean (SEM), based on technical replicates.
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Results
Pellet fraction of S. mansoni E/S products induces IL-10

production

Macrophages derived from the bone marrow of mice are

an abundant and widely used source of naïve cells for

in vitro studies [13-16]. Consequently, BMMϕs defined

on the basis of their expression of CD11b, F4/80, and

MHC-II, but not CD11c (Additional file 1: Figure S1)

were exposed overnight to 0-3hRP, 0-3hRPS, 0-3hRPP, or

left un-stimulated; 0-3hRP and 0-3hRPS were both used

at 50 μg/ml, whilst 0-3hRPP was used at a lower dose

(25 μg/ml) due to limited availability of material. Neverthe-

less, 0-3hRPP induced 10-fold more IL-10 than either 0-

3hRP, or 0-3hRPS (Figure 1A, both p < 0.0001). Conversely,

IL-12p40 production was significantly lower in BMMϕs

exposed to 0-3hRPP compared to 0-3hRP (p < 0.01), al-

though there was no significant difference between IL-

12p40 between 0-3hRP and 0-3hRPS (Figure 1B).

As IL-10 induction is significantly increased in response

to 0-3hRPP, the capacity of this preparation to inhibit IL-

12p40 was examined. Therefore, BMMϕs were exposed

overnight to LPS (1 ng/ml) in the presence of increasing

doses of 0-3hRPP. Even low concentrations of 0-3hRPP
(2 μg/ml) significantly reduced the amount of IL-12p40

produced by BMMϕs exposed to 1 ng/ml LPS (Figure 1C,

p < 0.0001), and although IL-12p40 production was still

higher than Media control at the highest dose of 0-3hRPP
(50 μg/ml), this was expected, as 0-3hRPP alone is able to

induce significant quantities of IL-12p40 (Figure 1B).

IL-10 production in the presence of LPS was enhanced

in the presence of the greatest concentrations of 0-3hRPP
(Figure 1C, p < 0.0001). Notably, IL-12p40 production was

significantly impaired at 2 μg/ml of 0-3hRPP (p < 0.0001,

Figure 1C), whereas the production IL-10 at this dose was

not significantly different compared to BMMϕs stimu-

lated with LPS only (Figure 1C). This observation sug-

gests that inhibition of IL-12p40 is independent of IL-10

as IL-12p40 is significantly reduced even in the absence

of IL-10. In line with this hypothesis, increasing doses of

unfractionated 0-3hRP were unable to block IL-12p40

production by BMMϕs, stimulated with LPS, despite a

significant increase in IL-10 production (p < 0.0001,

Additional file 2: Figure S2).

Sm16 is enriched in the pellet fraction of S. mansoni E/S

products

As the ability to induce IL-10 in BMMϕs differed between

0-3hRPs and 0-3hRPP, the distribution of proteins in the

two fractions was assessed by SDS-PAGE. 0-3hRPS retains

approximately 75% of the protein content available in the

Figure 1 The pelleted fraction of cercarial E/S products (0-3hRPP) induces abundant IL-10 from macrophages and blocks LPS driven

IL-12p40. The presence of (A) IL-10 and (B) IL-12p40 in culture supernatants from BMMΦs exposed to 0-3hRP (50 μg/ml), 0-3hRPS (50 μg/ml),

0-3hRPP (25 μg/ml), or left un-stimulated (Media). (C) IL-12p40 (closed circles, left axis) and IL-10 (open circles, right axis) in culture supernatants

of BMMΦs exposed to LPS (1 ng/ml) and increasing doses of 0-3hRPP. Bars, or symbols, are mean values ± SEM of 6 technical replicates and are

representative of three independent experiments. ANOVA and Tukey’s or Dunnett’s test were performed to examine statistically significant

differences between selected means (** = p < 0.01; **** = p < 0.0001; ns = p > 0.05).
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original unfractionated 0-3hRP preparation (Figure 2A),

whereas the amount of protein in the 0-3hRPP fraction

was much lower (~25%). Analysis by SDS-PAGE revealed

a number of discrete bands in the two fractions (Figure 2B)

with 0-3hRPP being comprised of a much simpler range

than 0-3hRPS. Two of the most dominant bands in 0-

3hRPP (Figure 2B, black arrows) were identified using MS/

MS, with the higher molecular weight band as Invadolysin

(M08) (Smp_90100) with a mascot score of 826 and 7

peptides identified, whilst the lower molecular weight

band contained Sm16 (Smp_113760), with a mascot score

70 and 2 peptides (Additional file 3: Table S1).

Western blot analysis of equivalent volumes of both

fractions, where each fraction was reconstituted to the

original starting volume of 0-3hRP used to make the

fractions, showed that anti-rSm16 antibody detected

the native form of this protein in both 0-3hRPS and

0-3hRPP (Additional file 4: Figure S3), whilst densitom-

etry analysis normalizing to pixel intensity of rSm16, indi-

cates that Sm16 was enriched as a proportion in 0-3hRPP
(greater than 5 fold) compared to 0-3hRPS (Figure 2C,

p < 0.0001).

Recombinant Sm16 blocks BMMΦs activation in response

to TLR4 and TLR3, but not TLR2 ligands

BMMϕs exposed to LPS were unable to produce signifi-

cant quantities of IL-12p40 and IL-10 when rSm16

(10 μg/ml) was present, whereas the Buffer control (phos-

phate buffer pH 7.5, containing 0.45 M NaCl to prevent

aggregation of rSm16) had no effect (Figure 3A &B).

Macrophage function is modulated in vivo by several cyto-

kines, particularly IFN-γ, in the presence of ligands for

TLR4. In this context, whilst IL-12p40 production to LPS

in the presence of IFN-γ (25U/ml) was enhanced, the

addition of rSm16 significantly reduced IL-12p40 produc-

tion (Figure 3C, p < 0.0001). Furthermore, whilst a small

amount of NO2
− was produced by BMMϕs in response

to LPS, this was reduced by the presence of rSm16

(Figure 3D, p < 0.01). Activation induced by IFN-γ,

greatly enhanced the levels of NO2
− detected; however

again rSm16 significantly reduced the levels of levels of

NO2
− (Figure 3D, p < 0.0001).

With respect to ligands for other TLRs, BMMϕs stim-

ulated with 25 μg/ml Poly I:C (ligand for TLR3) and

rSm16 were also unable to produce IL-12p40 (Figure 4A)

Figure 2 Sm16 is enriched in pellet fraction of cercarial E/S products. Three preparations of 0-3hRP were fractionated by ultracentrifugation

and the pellet fractions restored to the original volume of each preparation. (A) Protein content of each fraction expressed as a percentage of

the total protein present in the original preparation. Bars = mean + SEM; statistical significance was tested using two tailed t-test (*** = p < 0.001).

(B) SDS PAGE gel of 0-3hRP fractions (5, 10 and 20 μg) stained for protein. Black arrows highlight bands identified by mass spectrometry. (C) Equivalent

volumes of 0-3hRPS (78 μg) and 0-3hRPP (10 μg) based on the original preparation, were processed for Western blot analysis alongside rSm16 (1 μg)

probed using rabbit anti-rSm16 antibody, estimated as relative concentration of Sm16 / μg 0-3hRP. Bars are mean + SEM, two tailedt-test show

statistically significant differences (**** = p < 0.0001).
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or IL-10 (Figure 4C). However, the presence of rSm16

had no effect on cytokine production in BMMϕs ex-

posed to 5 μg/ml Pam3CSK4 (Figure 4B & D). There-

fore, whilst rSm16 prevented TLR4 and TLR3 mediated

activation of BMMϕs, it appears to be unable to block

signalling from TLR2.

Unlike LPS, Pam3CSK4 and Poly I:C, which are recog-

nized by only one TLR, S. mansoni cercarial secretions

require both TLR2 and TLR4 to induce cytokine produc-

tion (Sanin et. al., manuscript in preparation). BMMϕs

stimulated with 50 μg/ml 0-3hRP alone or treated with

rSm16, or buffer control, produced significantly less IL-

12p40 (p < 0.01, Additional file 5: Figure S4A) and sig-

nificantly more IL-10 (p < 0.001, Additional file 5: Figure

S4B). Thus, cytokine production by BMMϕs stimulated

with 0-3hRP, supplemented with rSm16, is reminiscent

of cytokine production by these cells exposed to 0-3hRPP
(Figure 1A & B). This is in line with our findings that

0-3hRPP has proportional more Sm16 than the unfractio-

nated antigen. As BMMϕs require TLR2 to respond to 0-

3hRP (Sanin et. al., manuscript in preparation), Sm16 too

could assert its inhibitory function through this receptor.

To confirm this, BMMϕs from TLR2−/− mice were stimu-

lated with LPS, or Poly I:C, in the presence of rSm16. Both

ligands induced robust IL-12p40 production in TLR2−/−

BMMϕs, but in both cases this was completely ablated by

rSm16 (Figure 4E), demonstrating that rSm16 acts on

BMMϕs independently of TLR2.

Recombinant Sm16 is taken up by BMMΦs using a

distinct processing pathway

BMMΦs exposed to rSm16 labelled with AF594

(rSm16AF594), revealed that rSm16 was closely associ-

ated with EEA-1 at 10 min, and as late as 100 min after

stimulation (Figure 5A). Indeed, EEA-1 appeared to sur-

round rSm16 (Figure 5B, white arrows on inserts), staining

which is frequently observed in immunofluorescence mi-

croscopy for EEA-1 [17], suggesting that rSm16 persists in

early endosomes. This prolonged retention of rSm16 in

early endosomes is reminiscent of previous observations

for 0-3hRP [3].

The cellular fate of rSm16 in BMMϕs compared to read-

ily processed DEXTRAN, as a marker of material being

present in the phagolysosomes [18], demonstrated that 10

and 60 min after removal of these stimuli, both rSm16AF594

and DEXTRANFITC were found in separate and discrete

intracellular BMMϕs compartments (Figure 5C). Whilst

rSm16AF594 was abundant in the periphery of the cell,

DEXTRANFITC was closer to the nucleus. By 100 min, only

a faint signal was detected for DEXTRANFITC. The

Figure 3 Recombinant Sm16 blocks activation of BMMΦs in response to LPS and IFN-γ. The presence of (A) IL-12p40 and (B) IL-10 in

culture supernatants from BMMΦs exposed to LPS (1 ng/ml) (black bars), or Media, in the presence of rSm16 (10 μg/ml) (hatched bars), or an

equivalent volume of protein buffer (open bars). (C) IL-12p40 and (D) nitric oxide (NO2
−) in culture supernatants from BMMΦs exposed to LPS

(1 ng/ml) plus IFN-γ (25U/ml) in the presence, or absence of rSm16 (10 μg/ml). Bars =means + SEM of 3 technical replicates. Dotted line represents

minimum level of cytokine detection by ELISA. Statistically significant differences tested by ANOVA and Bonferroni’s or Sidak’s test between selected

means (* = p < 0.05; ** = p < 0.01; *** = p < 0.001; **** = p < 0.0001; ns = p > 0.05). Results are representative of three independent experiments.
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presence of rSm16AF594 was also greatly reduced, yet

notably foci were still visible in the perinuclear region

(Figure 5C, white arrows).

Recombinant Sm16 treated BMMΦs exhibit delayed

antigen processing

Prolonged retention of rSm16 in BMMϕs suggested that

these cells might have a partial disruption of normal

antigen processing. To address this question BMMϕs

were treated with rSm16 or left untreated (Media) and

subsequently exposed to AlexaFluor®488 conjugated E.

coli BioParticles® (100 particles per cell) (Figure 6). The

percentage of cells containing E. coli particles was deter-

mined to be significantly higher in rSm16 treated BMMϕs

compared to Media control after 30 and 100 min

(p < 0.0001, Figure 6A & B) post exposure. The median

fluorescence intensity (MFI) of the population (representa-

tive overlaid histogram after 30 min given in Figure 6C),

as a measure of E. coli particles within BMMϕs, was used

to calculate the fold increase in the retention of Sm16

antigen, setting Media control arbitrarily to 1 (Figure 6D).

In line with increased percentage of positive cells, BMMϕs

treated with rSm16 retained 2-fold more E. coli particles

after 30 min (p < 0.0001) and this retention was still

Figure 4 Recombinant Sm16 blocks cytokine production in BMMΦs exposed to TLR4 and TLR3, but not TLR2 ligands. (A-B) IL-12p40

and (C-D) IL-10 in culture supernatants from BMMΦs exposed to (A&C) Poly I:C (25 μg/ml), (B & D) Pam3CSK4 (5 μg/ml), or Media, plus rSm16

(10 μg/ml) (hatched bars) or an equivalent volume of protein buffer (open bars). Stimulus only controls (black bars) are also given. (E) BMMΦs from

TLR2−/− mice exposed to LPS (1 ng/ml), or Poly I:C (25 μg/ml) (solid bars), plus rSm16 (10 μg/ml) (hatched bars), and supernatants tested for

IL-12p40 by ELISA. Means + SEM of 3 technical replicates are presented. Dotted line represents minimum level of cytokine detection. ANOVA and

Bonferroni’s or Sidak’s test were performed to examine statistically significant differences between the means (* = p < 0.05; ** = p < 0.01; *** =

p < 0.001; **** = p < 0.0001; ns = p > 0.05). Results are representative of three independent experiments.
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evident (albeit to a lesser degree) after 100 min (Figure 6D;

p < 0.01).

Discussion

In the present study we show that Sm16 is a major com-

ponent of S. mansoni cercarial E/S products and as indi-

viduals living in areas endemic for schistosomiasis are

liable to be frequently exposed to infective S. mansoni

cercariae their E/S products, including Sm16, have the

potential to provide a major stimulant of the innate im-

mune system. Cercarial E/S products are composed of

soluble and particulate fractions, with the latter most

likely consisting of protein aggregates, which might

accumulate in host tissues to a greater extent than the

soluble fraction. As 0-3hRPP is produced as a pellet, its

effect on BMMϕs might only occur after proteolytic

Figure 5 Uptake of fluorescently labelled rSm16 by BMMΦs. Representative confocal images of (A) BMMΦs exposed to labelled rSm16AF594

(red) stained with DAPI (blue) within EEA-1+ endosomes (green) 10 min and 100 min after ligand stimulation. (B) Insert showing EEA-1+

endosomes containing rSm16AF594 (2 μm x 2 μm) (C) BMMΦs exposed for 100 min to rSm16AF594 (red) and DEXTRANFITC (green) washed and

imaged after 10, 60 and 100 min. (63x objective, scale bar = 10 μm; acquired using a Zeiss LSM 710 invert microscope).
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degradation within these cells. Moreover, increased anti-

inflammatory activity observed in the pellet fraction of

0-3hRP may be due to its higher Sm16 content (~10%).

We show that rSm16 inhibits cytokine production to

TLR3 and TLR4 ligands in murine macrophages in a

manner similar to previous observations using human

cells where induction of IL-6 and IL-1RA was impaired

[10]. Furthermore, we show that Sm16 also prevents IL-

12p40 production by macrophages that could restrict

the induction of IL-12-driven Th1 cell responses [19-22].

Indeed, multiple exposures of skin to S. mansoni cercariae

(and therefore greater quantities of E/S products, includ-

ing Sm16) leads to lymphocytes in the skin draining

lymph nodes becoming hypo-responsive in terms of Th

cell associated cytokine production (Prendergast et. al.,

manuscript submitted) [23]. Infection with Sm16 deficient

parasites (obtained through RNA silencing, or genetic ma-

nipulation) could ideally prove conclusively the role of this

protein in the course of a skin infection, but these tools

are not yet available [24].

In addition to its ability to inhibit innate immune cell

responses to TLR ligands, Sm16 prevented classical acti-

vation of macrophages which ordinarily occurs in the

presence of IFN-γ leading to polarized Th1 responses

[25]. Classically activated macrophages (CAMϕs) have

increased bactericidal capacity as they have an elevated

production of NO, and also produce elevated levels of

IL-12, further supporting a Th1 environment [26]. How-

ever, Sm16 blocked IFN-γ activation of macrophages

in vitro, both by preventing IL-12p40 production and

limiting NO production thereby restricting their ability

to become classically activated. Consequently, Sm16 has

the potential to impair both innate and adaptive immune

responses in vivo in naturally infected hosts.

Immune modulation by helminth antigens has been

traditionally linked to glycosylation, particularly since

helminth E/S products are often heavily glycosylated

[27-29]. Several proteins present in 0-3hRP are known

to be heavily glycosylated [30], and glycans are partly re-

sponsible for the uptake of 0-3hRP [14]. However, Sm16

Figure 6 Recombinant Sm16 delays antigen processing by BMMΦs. BMMΦs were exposed for 10, 30, 100 or 1000 min to AlexaFluor®488

conjugated E. coli BioParticles® (100 particles per cell) in the absence (Media, open circles), or presence of rSm16 (10 μg/ml) (closed circles).

(A) Representative flow plots of BMMΦs 30 min after exposure to E. coli particles. (B) Mean percentages ± SEM of BMMΦs containing labelled E. coli

BioParticles at each time point, and (C) representative overlaid histograms including the MFI ± SD of each group. (D) Mean ± SEM fold-retention of

labelled E. coli BioParticles within rSm16-treated BMMφs, relative to the respective MFI of BMMΦs treated with Media control, arbitrarily set to 1.

Statistically significant differences between the means of rSm16 treated and Media controls at each time point were examined by ANOVA and

Sidak’s test (** = p < 0.01; **** = p < 0.0001).
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is not glycosylated [30], and its immunomodulatory func-

tion is evident when expressed as a recombinant protein

in eukaryotic cells from organisms other than S. mansoni,

that have an inherently different glycosylation machinery

[9,10]. Thus, we conclude that the regulatory function of

Sm16 is independent of its glycosylation state.

Earlier reports on the inhibitory potential of Sm16

suggest that this occurs at very early stages of TLR

signalling, as it can block both NF-κB activation and

IRAK1 degradation [10]. Moreover, since 0-3hRP re-

quires TLR2, TLR4 and MyD88 to induce cytokine pro-

duction (Sanin et. al., manuscript in preparation) [7] and

as its uptake is partly mediated by the mannose receptor

[14], several other pattern recognition receptors are

likely to be required to mediate the function of 0-3hRP.

However, direct competition with TLR ligands as a

mechanism for Sm16 inhibition seems unlikely, as TLR

ligands have diverse chemical structures. Furthermore,

the fact that TLR4 and TLR3 use different adaptor mol-

ecules (MyD88 vs. TRIF) [31], but are both inhibited by

Sm16, suggests that the inhibitory mechanism involving

Sm16 is independent of either receptor. Moreover,

TLR2 is able to scape the inhibitory effect of Sm16, fur-

ther suggesting that adaptor molecules and downstream

signalling pathways common between the three TLRs

are unlikely to be the target of Sm16. Other helminth

products inhibit TLR driven cytokine production by se-

questration of downstream signalling machinery [32],

and 0-3hRP is known to have altered endosomal pro-

cessing [3]. If Sm16 exerts its function by limiting the

availability of TLR signalling machinery, its effect would

be then independent of TLR binding. To confirm this

conclusion, we demonstrated that TLR2 signalling was

indeed not required for the inhibitory action of Sm16.

Thus, Sm16 inhibits TLR signalling using a mechanism

that does not depend on direct binding to a TLR.

Sm16 was rapidly taken into macrophages and remained

in early endosomes for a prolonged time (100 min), rem-

iniscent of 0-3hRP [3] and was not rapidly degraded. On

the other hand, DEXTRAN, which is widely used as a

lysosome tracker [33,34], was taken up within 10 minutes

into a different intracellular compartment and then speed-

ily degraded as it reached the lysosomes. In contrast, the

intracellular fate of Sm16 had much slower degradation

rates, further confirming our earlier observation of reten-

tion in early endosomes. Sm16 was also able to increase

the retention of E. coli particles in macrophages, suggest-

ing that overall antigen processing in these cells might be

altered by Sm16. Phagosome maturation is influenced by

TLR4 signalling [35], which Sm16 is able to block. Thus,

the observed delayed antigen processing evidenced in this

report could be as a result of Sm16 mediated TLR inhib-

ition. However, as ligation of TLR4 can direct signalling

from phagosomes [36,37], this opens up the possibility

that Sm16 might be blocking TLR signalling by limiting

antigen trafficking to these organelles.

Conclusions

We conclude that the particulate/pellet fraction of S.

mansoni cercarial E/S material contains a significantly

greater proportion of Sm16 than the soluble fraction,

which may explain why the pellet fraction has a greater

propensity to induce regulatory IL-10. The inhibitory ac-

tivity of Sm16 operates upon TLR4 and TLR3 induced

signalling but is not mediated by direct interaction with

TLR2. Moreover, Sm16 is able to prevent classical acti-

vation of macrophages in the context of IFN-γ stimula-

tion. The mechanism employed by Sm16 to inhibit

macrophage activation is likely to be linked with the

rapid uptake and retention of this protein, which has a

membrane binding properties [9], leading it to be

quickly internalized. However, the rapid uptake of Sm16

does not lead to fast degradation, or indeed lysosomal

trafficking, but instead results in retention in early endo-

somes leading to delayed processing. As with other hel-

minth products, retention within intracellular

components may possibly be responsible for mediating

sequestration of essential TLR signalling machinery that

subsequently blocks stimulation of specific TLRs [32].

Moreover, it appears that Sm16 extends this processing

“defect” to E. coli particles, which exhibit enhanced re-

tention in macrophages exposed to this protein, which

could suggest that Sm16 prevents TLR signalling from

within phagosomes. This could help explain why re-

peated exposure to S. mansoni cercariae, consequently

leading to greater exposure to particulate fraction of

cercarial secretions containing Sm16, leads to the inhib-

ition of APC function and T cell responses in the course

of infection [23].

Additional files

Additional file 1: Figure S1. Characterization of bone marrow cells as

macrophages. Bone marrow cells cultured for 7 days were stained with

(A) a viability dye and (B) labelled with antibodies against F4/80, CD11b,

MHC-II and CD11c or relevant antibody isotype controls. Representative

flow plots with percentages for numbers of cells within each gate from 7

independent experiments.

Additional file 2: Figure S2. Unfractionated cercarial E/S products

(0-3hRP) do not block LPS driven production of IL-12p40. The presence

of IL-12p40 (closed circles, left axis) and IL-10 (open circles, right axis) in

culture supernatants of BMMΦs exposed to LPS (1ng/ml) and increasing

doses of 0-3hRP. Symbols are mean values ±SEM of 3 technical replicates

and are representative of two independent experiments. ANOVA and

Dunnett’s test were performed to examine statistically significant

differences between mean of LPS only control and LPS+0-3hRP treated

BMMΦs at each dose (**** = p<0.0001; ns = p>0.05).

Additional file 3: Table S1.

Additional file 4: Figure S3. Western blot for Sm16 in fractions of

cercarial E/S products. Equivalent volumes of 0-3hRPS (78 μg) and

0-3hRPP (10μg) based on the original preparation, plus an extra lane with
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2x 0-3hRPP (20μg), were processed for Western blot analysis alongside

rSm16 (1μg) and probed using rabbit anti-rSm16 antibody.

Additional file 5: Figure S4. BMMΦs stimulated with recombinant

Sm16 and S. mansoni cercarial secretions (0-3hRP) produced enhanced

IL-10 and reduced IL-12p40. The presence of (A) IL-12p40 and (B) IL-10 in

culture supernatants from BMMΦs exposed to 0-3hRP (50μg/ml) (black

bars), or Media, in the presence of rSm16 (10μg/ml) (hatched bars), or an

equivalent volume of protein buffer (open bars). Bars are means +SEM of

3 technical replicates. Dotted line represents minimum level of cytokine

detection. Statistically significant differences tested by ANOVA and Sidak’s

test between selected means (** = p<0.01; *** = p<0.001; **** =

p<0.0001; ns = p>0.05). Results are representative of three independent

experiments.
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