4 research outputs found

    First data on the seasonal diet of the vulnerable Gazella cuvieri (Mammalia: Bovidae) in the Djebel Messaâd forest, northern Algeria

    No full text
    A good knowledge of food resource utilization is essential to understand how most wild ungulates meet their seasonal requirements in order to improve conservation of endangered taxa. Using faecal sampling, the diet of Gazella cuvieri has was investigated in the Djebel Messaâd Mountain (M’sila Province, Algeria) from September 2013 to August 2014. A microhistological analysis method revealed that gazelles ate 29 species of plants during the year. The grass Stipa tenacissima and the shrub Artemisia herba alba were the major food items throughout the year. The highest diversity was recorded in spring (17 taxa) despite a large consumption of Helianthemum lippii, the lowest in a dry summer (nine species), including the major consumption of the shrubs Phillyrea media and Thymus algeriensis, together with Artemisia herba alba, Stipa tenacissima and Stipa parviflora. An average relative numerical abundance of 50.5 % of the diet comprised shrubs and trees, mainly including A. herba alba, T. algeriensis and Cistus libanotis. Grasses and forbs accounted for 29.4 % and 20.1 % respectively. Based on this study, this gazelle species can be classified as an intermediate feeder (i.e. browser-grazer)

    Use of sea urchin spines with chitosan gel for biodegradable film production

    No full text
    In recent years, the film production from natural polymers has considerably increased in food industry as an alternative to the petroleum based synthetic films. Chitosan is one of the most preferred biopolymers for bio-based film production, due to its biocompatibility, biodegradability, antioxidant activity and antimicrobial properties. Because of its hydrophilic properties, chitosan based films dissolve in water, limiting its uses in industry, to overcome this problem; we mixed 200 and 400 mg of the sea urchin spine powder (SUSP) with 20 mL chitosan gel respectively, to obtain a hydrophobic film. The chitosan films prepared with 200 mg SUSP showed a rise in the degree of contact angle from 70.2° to 107° providing hydrophobicity properties. On the other hand, addition of 400 mg of SUSP to chitosan film resulted in a contact angle of 96.1°. Moreover, the antioxidant activity and thermal stability of the films were increased in the presence of SUSP. Fourier Transform Infrared Spectrophotometry results proved the interactions between chitosan and SUSP. Chitosan films have smooth surface while SUSP blended films have rough surface morphology. These results demonstrated that SUSP is needed to improve the properties of chitosan films for usage in food industry
    corecore