19 research outputs found

    Phase-locked arrays of surface-emitting graded-photonic-heterostructure terahertz semiconductor lasers

    Get PDF
    We have demonstrated that a hybrid laser array, combining graded-photonic-heterostructure terahertz semiconductor lasers with a ring resonator, allows the relative phase (either symmetric or anti-symmetric) between the sources to be fixed by design. We have successfully phase-locked up to five separate lasers. Compared with a single device, we achieved a clear narrowing of the output beam profile

    Far-field engineering of metal -metal terahertz quantum cascade lasers with integrated horn antennas

    Get PDF
    The far-field of metal-metal terahertz quantum cascade lasers is greatly improved through integrated and stable planar horn antennas on top of the QCL ridge. The antenna structures introduce a gradual change in the high modal confinement of metal-metal waveguides and permit an improved far-field, showing a five times increase in the emitted output power. The two dimensional far-field patterns are measured at 77K and compared to electromagnetic simulations. The influence of parasitic high order transverse modes are restricted through the engineering of antenna structure (ridge and antenna width) to couple out the fundamental mode only

    THz quantum cascade lasers operating on the radiative modes of a 2D photonic crystal

    Get PDF
    Photonic-crystal lasers operating on Γ-point band-edge states of a photonic structure naturally exploit the so-called “nonradiative” modes. As the surface output coupling efficiency of these modes is low, they have relatively high Q factors, which favor lasing. We propose a new 2D photonic-crystal design that is capable of reversing this mode competition and achieving lasing on the radiative modes instead. Previously, this has only been shown in 1D structures, where the central idea is to introduce anisotropy into the system, both at unit-cell and resonator scales. By applying this concept to 2D photonic-crystal patterned terahertz frequency quantum cascade lasers, surface-emitting devices with diffraction-limited beams are demonstrated, with 17 mW peak output power

    Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures

    Get PDF
    The far-field emission profile of terahertz quantum cascade lasers (QCLs) in metal-metal waveguides is controlled in directionality and form through planar horn-type shape structures, whilst conserving a broad spectral response. The structures produce a gradual change in the high modal confinement of the waveguides and permit an improved far-field emission profile and resulting in a four-fold increase in the emitted output power. The two-dimensional far-field patterns are measured at 77 K and are agreement in with 3D modal simulations. The influence of parasitic high-order transverse modes is shown to be controlled by engineering the horn structure (ridge and horn widths), allowing only the fundamental mode to be coupled out

    Short THz pulse generation from a dispersion compensated modelocked quantum cascade laser

    Get PDF
    Dispersion compensation is vital for the generation of ultrashort and single cycle pulses from modelocked lasers across the electromagnetic spectrum. However, no such scheme have been successfully applied to terahertz (THz) quantum cascade lasers (QCL) for short and stable pulse generation in the THz range. Here we show a monolithic on-chip compensation scheme for a modelocked QCL, permitting THz pulses to be considerably shortened from 16ps to 4ps. This is based on the realization of a small coupled cavity resonator that acts as an 'off resonance' Gires-Tournois interferometer (GTI), permitting large THz spectral bandwidths to be compensated

    Terahertz pulse generation from quantum cascade lasers

    Get PDF
    We demonstrate the generation of 11ps terahertz pulses from metal-metal (MM) quantum cascade lasers (QCLs) at 77K via active mode-locking. Contrary to popular belief that a long gain recovery time is required, we demonstrate that the dominant factor necessary for active pulse generation is in fact the synchronization between the propagating electronic microwave modulation and the generated THz pulses in the QCL. This allows the THz pulse to propagate in phase with the microwave modulation along the gain medium, permitting pulse generation

    Short pulse generation and dispersion in THz quantum cascade lasers

    Get PDF
    We demonstrate the generation of short terahertz pulses from spectrally broad metal-metal quantum cascade lasers at 77 K via active mode-locking, and show the limiting role of phase-matching between the terahertz pulse and the microwave modulation. Furthermore a new concept of THz pulse dispersion control is proposed to go beyond the limitation of the current modulation scheme
    corecore