37 research outputs found

    Generic polynomial vector fields are not integrable

    Get PDF
    AbstractWe study some generic aspects of polynomial vector fields or polynomial derivations with respect to their integration. In particular, using a well-suited presentation of Darboux polynomials at some Darboux point as power series in local Darboux coordinates, it is possible to show, by algebraic means only, that the Jouanolou derivation in four variables has no polynomial first integral for any integer value s ≥ 2 of the parameter.Using direct sums of derivations together with our previous results we show that, for all n ≥ 3 and s ≥ 2, the absence of polynomial first integrals, or even of Darboux polynomials, is generic for homogeneous polynomial vector fields of degree s in n variables

    Darboux polynomials for Lotka-Volterra systems in three dimensions

    Full text link
    We consider Lotka-Volterra systems in three dimensions depending on three real parameters. By using elementary algebraic methods we classify the Darboux polynomials (also known as second integrals) for such systems for various values of the parameters, and give the explicit form of the corresponding cofactors. More precisely, we show that a Darboux polynomial of degree greater than one is reducible. In fact, it is a product of linear Darboux polynomials and first integrals.Comment: 16 page

    On the algebraic invariant curves of plane polynomial differential systems

    Full text link
    We consider a plane polynomial vector field P(x,y)dx+Q(x,y)dyP(x,y)dx+Q(x,y)dy of degree m>1m>1. To each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω=dx/P=dy/Q\omega=dx/P=dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate was already found by D. Cerveau and A. Lins Neto [Ann. Inst. Fourier Grenoble 41, 883-903] in a different way.Comment: 10 pages, Latex, to appear in J.Phys.A:Math.Ge

    An integrating factor matrix method to find first integrals

    Full text link
    In this paper we developed an integrating factor matrix method to derive conditions for the existence of first integrals. We use this novel method to obtain first integrals, along with the conditions for their existence, for two and three dimensional Lotka-Volterra systems with constant terms. The results are compared to previous results obtained by other methods

    Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations

    Full text link
    We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Regarding regularity, we show that the RG map, defined on a suitable space of interactions (= formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d3d \ge 3, these pathologies occur in a full neighborhood {β>β0,h<ϵ(β)}\{ \beta > \beta_0 ,\, |h| < \epsilon(\beta) \} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d2d \ge 2, the pathologies occur at low temperatures for arbitrary magnetic-field strength. Pathologies may also occur in the critical region for Ising models in dimension d4d \ge 4. We discuss in detail the distinction between Gibbsian and non-Gibbsian measures, and give a rather complete catalogue of the known examples. Finally, we discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
    corecore