1,263 research outputs found
Characterization of separability and entanglement in - and -dimensional systems by single-qubit and single-qutrit unitary transformations
We investigate the geometric characterization of pure state bipartite
entanglement of - and -dimensional composite
quantum systems. To this aim, we analyze the relationship between states and
their images under the action of particular classes of local unitary
operations. We find that invariance of states under the action of single-qubit
and single-qutrit transformations is a necessary and sufficient condition for
separability. We demonstrate that in the -dimensional case the
von Neumann entropy of entanglement is a monotonic function of the minimum
squared Euclidean distance between states and their images over the set of
single qubit unitary transformations. Moreover, both in the - and
in the -dimensional cases the minimum squared Euclidean distance
exactly coincides with the linear entropy (and thus as well with the tangle
measure of entanglement in the -dimensional case). These results
provide a geometric characterization of entanglement measures originally
established in informational frameworks. Consequences and applications of the
formalism to quantum critical phenomena in spin systems are discussed.Comment: 8 pages, 1 figur
Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5–10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC
Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes
Weak lensing by large scale structure induces correlated ellipticities in the
images of distant galaxies. The two-point correlation is determined by the
matter power spectrum along the line of sight. We use the fully nonlinear
evolution of the power spectrum to compute the predicted ellipticity
correlation. We present results for different measures of the second moment for
angular scales \theta \simeq 1'-3 degrees and for alternative normalizations of
the power spectrum, in order to explore the best strategy for constraining the
cosmological parameters. Normalizing to observed cluster abundance the rms
amplitude of ellipticity within a 15' radius is \simeq 0.01 z_s^{0.6}, almost
independent of the cosmological model, with z_s being the median redshift of
background galaxies.
Nonlinear effects in the evolution of the power spectrum significantly
enhance the ellipticity for \theta < 10' -- on 1' the rms ellipticity is \simeq
0.05, which is nearly twice the linear prediction. This enhancement means that
the signal to noise for the ellipticity is only weakly increasing with angle
for 2'< \theta < 2 degrees, unlike the expectation from linear theory that it
is strongly peaked on degree scales. The scaling with cosmological parameters
also changes due to nonlinear effects. By measuring the correlations on small
(nonlinear) and large (linear) angular scales, different cosmological
parameters can be independently constrained to obtain a model independent
estimate of both power spectrum amplitude and matter density \Omega_m.
Nonlinear effects also modify the probability distribution of the ellipticity.
Using second order perturbation theory we find that over most of the range of
interest there are significant deviations from a normal distribution.Comment: 38 pages, 11 figures included. Extended discussion of observational
prospects, matches accepted version to appear in Ap
Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing
We present the theoretical and analytical bases of optimal techniques to
measure weak gravitational shear from images of galaxies. We first characterize
the geometric space of shears and ellipticity, then use this geometric
interpretation to analyse images. The steps of this analysis include:
measurement of object shapes on images, combining measurements of a given
galaxy on different images, estimating the underlying shear from an ensemble of
galaxy shapes, and compensating for the systematic effects of image distortion,
bias from PSF asymmetries, and `"dilution" of the signal by the seeing. These
methods minimize the ellipticity measurement noise, provide calculable shear
uncertainty estimates, and allow removal of systematic contamination by PSF
effects to arbitrary precision. Galaxy images and PSFs are decomposed into a
family of orthogonal 2d Gaussian-based functions, making the PSF correction and
shape measurement relatively straightforward and computationally efficient. We
also discuss sources of noise-induced bias in weak lensing measurements and
provide a solution for these and previously identified biases.Comment: Version accepted to AJ. Minor fixes, plus a simpler method of shape
weighting. Version with full vector figures available via
http://www.astro.lsa.umich.edu/users/garyb/PUBLICATIONS
Is the far border of the Local Void expanding?
According to models of evolution in the hierarchical structure formation
scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the
closest large void, and it provides a unique opportunity to test
observationally such an expansion. It has been found that the Local Group,
which is on the border of the LV, is running away from the void center at ~260
km/s. In this study we investigate the motion of the galaxies at the far-side
border of the LV to examine the presence of a possible expansion. We selected
late-type, edge-on spiral galaxies with radial velocities between 3000 km/s and
5000 km/s, and carried out HI 21 cm line and H-band imaging observations. The
near-infrared Tully-Fisher relation was calibrated with a large sample of
galaxies and carefully corrected for Malmquist bias. It was used to compute the
distances and the peculiar velocities of the LV sample galaxies. Among the 36
sample LV galaxies with good quality HI line width measurements, only 15
galaxies were selected for measuring their distances and peculiar velocities,
in order to avoid the effect of Malmquist bias. The average peculiar velocity
of these 15 galaxies is found to be -419+208-251 km/s, which is not
significantly different from zero. Due to the intrinsically large scatter of
Tully-Fisher relation, we cannot conclude whether there is a systematic motion
against the center of the LV for the galaxies at the far-side boundary of the
void. However, our result is consistent with the hypothesis that those galaxies
at the far-side boundary have an average velocity of ~260 km/s equivalent to
what is found at the position of the Local Group.Comment: 15 pages, 6 figures, and 4 tables. Accepted for publication in A&
MIPS: The Multiband Imaging Photometer for SIRTF
The Multiband Imaging Photometer for SIRTF (MIPS) is to be designed to reach as closely as possible the fundamental sensitivity and angular resolution limits for SIRTF over the 3 to 700ÎĽm spectral region. It will use high performance photoconductive detectors from 3 to 200ÎĽm with integrating JFET amplifiers. From 200 to 700ÎĽm, the MIPS will use a bolometer cooled by an adiabatic demagnetization refrigerator. Over much of its operating range, the MIPS will make possible observations at and beyond the conventional Rayleigh diffraction limit of angular resolution
- …