96 research outputs found

    Chemical vapor deposition growth

    Get PDF
    A chemical vapor deposition (CVD) reactor system with a vertical deposition chamber was used for the growth of Si films on glass, glass-ceramic, and polycrystalline ceramic substrates. Silicon vapor was produced by pyrolysis of SiH4 in a H2 or He carrier gas. Preliminary deposition experiments with two of the available glasses were not encouraging. Moderately encouraging results, however, were obtained with fired polycrystalline alumina substrates, which were used for Si deposition at temperatures above 1,000 C. The surfaces of both the substrates and the films were characterized by X-ray diffraction, reflection electron diffraction, scanning electron microscopy optical microscopy, and surface profilometric techniques. Several experiments were conducted to establish baseline performance data for the reactor system, including temperature distributions on the sample pedestal, effects of carrier gas flow rate on temperature and film thickness, and Si film growth rate as a function of temperature

    Chemical vapor deposition growth

    Get PDF
    A laboratory type CVD reactor system with a vertical deposition chamber and sample pedestal heated by an external RF coil has been extensively modified by installation of mass flow controllers, automatic process sequence timers, and special bellows-sealed air-operated valves for overall improved performance. Various film characterization procedures, including classical metallography, SEM analyses, X ray diffraction analyses, surface profilometry, and electrical measurements (resistivity, carrier concentration, mobility, spreading resistance profiles, and minority-carrier lifetime by the C-V-t method) area used to correlate Si sheet properties with CVD parameters and substrate properties. Evaluation procedures and measurements are given. Experimental solar cell structures were made both in epitaxial Si sheet (on sapphire substrates) and in polycrystalline material on alumina substrates, the former to provide an indication of what might be an upper limit on performance of the latter. Preliminary results are given, as obtained in cell structures not specially designed to allow for the unique properties of the sheet material, and fabricated in material known to be far from optimum for photovoltaic performance. Low power conversion efficiencies have been obtained in the epitaxial as well as the polycrystalline Si sheet

    α-Mangostin Effectively Inhibits Chikungunya Virus Replication in HepG2 Cells

    Get PDF
    Chikungunya virus (CHIKV) is an arthropod-transmitted Alphavirus endemic to countries in Africa and Asia, including Indonesia, which causes debilitating arthralgia which can last several years. The rapid spread of CHIKV to new areas makes the discovery of antiviral agents a high priority. α-mangostin is a xanthone from mangosteen (Garcinia mangostana) pericarp and has antiviral activity against Hepatitis C and Dengue viruses. We investigated the antiviral activity of α-mangostin against CHIKV in HepG2 cells in pre-, post- and combination treatments compared to the common antiviral medicine ribavirin, as well their cytotoxicity. Our results show dose-responsive reductions in viral titer in all treatment regimes, with post- and combination treatments being more effective than pre-treatment only (IC50 = 7.79, 5.99 and 6.39 µM, respectively), but with poor specificity (SI = 1.39, 1.81 and 1.70, respectively) compared to ribavirin. Neither compound showed a direct virucidal effect. These results suggest α-mangostin effectively inhibits CHIKV replication in this cell line

    Chemical vapor deposition growth

    Get PDF
    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells

    Back to the future—revisiting Skylab data on ocular counter-rolling and motion sickness

    Get PDF
    In the early 1970s, nine astronauts participated in missions to the Skylab space station. During two preflight testing sessions at the Naval Aerospace Medical Research Laboratory in Pensacola, the amplitudes of their ocular counter-rolling (OCR) during body tilts were assessed to determine if their vestibular functions were within normal ranges. We recently re-evaluated this data to determine asymmetry of each astronaut’s OCR response and their OCR slope from sigmoid fits during static leftward and rightward body tilts, which we then compared with their Coriolis sickness susceptibility index (CSSI) on the ground, their motion sickness symptom scores during 0 g maneuvers in parabolic flight, and the severity of the symptoms of space motion sickness (SMS) they reported during their spaceflights. We arranged the astronauts in rank order for SMS severity based on the SMS symptoms they reported during spaceflight and the amount of anti-motion sickness medication they used. As previously reported, the OCR amplitudes of these astronauts were within the normal range. We determined that the OCR amplitudes were not correlated with SMS severity ranking, CSSI, or motion sickness symptoms experienced during parabolic flight. Indices of asymmetry in the OCR reflex were generally small and poorly correlated with SMS scores; however, the only subject with a high index of asymmetry also ranked highly for SMS. Although OCR slope, CSSI, and motion sickness symptoms induced during parabolic flight were each only moderately correlated with SMS severity ranking (rho = 0.41–0.44), a combined index that included all three parameters with equal weighting was significantly correlated with SMS severity ranking (rho = 0.71, p = 0.015). These results demonstrate the challenge of predicting an individual’s susceptibility to SMS by measuring a single test parameter in a terrestrial environment and from a limited sample size

    West Nile Virus Genetic Diversity is Maintained during Transmission by Culex pipiens quinquefasciatus Mosquitoes

    Get PDF
    Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes

    Temperature, Viral Genetics, and the Transmission of West Nile Virus by Culex pipiens Mosquitoes

    Get PDF
    The distribution and intensity of transmission of vector-borne pathogens can be strongly influenced by the competence of vectors. Vector competence, in turn, can be influenced by temperature and viral genetics. West Nile virus (WNV) was introduced into the United States of America in 1999 and subsequently spread throughout much of the Americas. Previously, we have shown that a novel genotype of WNV, WN02, first detected in 2001, spread across the US and was more efficient than the introduced genotype, NY99, at infecting, disseminating, and being transmitted by Culex mosquitoes. In the current study, we determined the relationship between temperature and time since feeding on the probability of transmitting each genotype of WNV. We found that the advantage of the WN02 genotype increases with the product of time and temperature. Thus, warmer temperatures would have facilitated the invasion of the WN02 genotype. In addition, we found that transmission of WNV accelerated sharply with increasing temperature, T, (best fit by a function of T4) showing that traditional degree-day models underestimate the impact of temperature on WNV transmission. This laboratory study suggests that both viral evolution and temperature help shape the distribution and intensity of transmission of WNV, and provides a model for predicting the impact of temperature and global warming on WNV transmission

    RNAi Targeting of West Nile Virus in Mosquito Midguts Promotes Virus Diversification

    Get PDF
    West Nile virus (WNV) exists in nature as a genetically diverse population of competing genomes. This high genetic diversity and concomitant adaptive plasticity has facilitated the rapid adaptation of WNV to North American transmission cycles and contributed to its explosive spread throughout the New World. WNV is maintained in nature in a transmission cycle between mosquitoes and birds, with intrahost genetic diversity highest in mosquitoes. The mechanistic basis for this increase in genetic diversity in mosquitoes is poorly understood. To determine whether the high mutational diversity of WNV in mosquitoes is driven by RNA interference (RNAi), we characterized the RNAi response to WNV in the midguts of orally exposed Culex pipiens quinquefasciatus using high-throughput, massively parallel sequencing and estimated viral genetic diversity. Our data demonstrate that WNV infection in orally exposed vector mosquitoes induces the RNAi pathway and that regions of the WNV genome that are more intensely targeted by RNAi are more likely to contain point mutations compared to weakly targeted regions. These results suggest that, under natural conditions, positive selection of WNV within mosquitoes is stronger in regions highly targeted by the host RNAi response. Further, they provide a mechanistic basis for the relative importance of mosquitoes in driving WNV diversification
    • …
    corecore