326 research outputs found

    Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    Get PDF
    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization

    ADAMTS13 mutations identified in familial TTP patients result in loss of VWF‐cleaving protease activity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106109/1/jth03964.pd

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    In-vivo monitoring for electrical expression of plant living parameters by an impedance lab system

    Get PDF
    We present a complete in-lab system to monitor the plant and its surrounding environment. The plant impedance is directly measured in a continuous manner, while, simultaneously surrounding environment parameters known to affect plant status, are monitored. This is done combining a new in-vivo direct measurement of the plant together with an embedded system using available sensor technology and a designated interface for continuous data acquisition. Furthermore, the next versions this system can be deployed as a field monitoring device, with simple adaptations

    Assessing the feasibility of augmenting fall detection systems by relying on UWB-based position tracking and a home robot

    Get PDF
    Falls in the home environment are a primary cause of injury in older adults. According to the U.S. Centers for Disease Control and Prevention, every year, one in four adults 65 years of age and older reports experiencing a fall. A variety of different technologies have been proposed to detect fall events. However, the need to detect all fall instances (i.e., to avoid false negatives) has led to the development of systems marked by high sensitivity and hence a significant number of false alarms. The occurrence of false alarms causes frequent and unnecessary calls to emergency response centers, which are critical resources that should be utilized only when necessary. Besides, false alarms decrease the level of confidence of end-users in the fall detection system with a negative impact on their compliance with using the system (e.g., wearing the sensor enabling the detection of fall events). Herein, we present a novel approach aimed to augment traditional fall detection systems that rely on wearable sensors and fall detection algorithms. The proposed approach utilizes a UWB-based tracking system and a home robot. When the fall detection system generates an alarm, the alarm is relayed to a base station that utilizes a UWB-based tracking system to identify where the older adult and the robot are so as to enable navigating the environment using the robot and reaching the older adult to check if he/she experienced a fall. This approach prevents unnecessary calls to emergency response centers while enabling a tele-presence using the robot when appropriate. In this paper, we report the results of a novel fall detection algorithm, the characteristics of the alarm notification system, and the accuracy of the UWB-based tracking system that we implemented. The fall detection algorithm displayed a sensitivity of 99.0% and a specificity of 97.8%. The alarm notification system relayed all simulated alarm notification instances with a maximum delay of 106 ms. The UWB-based tracking system was found to be suitable to locate radio tags both in line-of-sight and in no-line-of-sight conditions. This result was obtained by using a machine learning-based algorithm that we developed to detect and compensate for the multipath effect in no-line-of-sight conditions. When using this algorithm, the error affecting the estimated position of the radio tags was smaller than 0.2 m, which is satisfactory for the application at hand

    Von Willebrand factor is a major determinant of ADAMTS-13 decrease during mouse sepsis induced by cecum ligation and puncture

    Get PDF
    Summary. Background: During sepsis, von Willebrand factor (VWF) is abundantly secreted; the main mechanism regulating its size involves specific proteolysis by the metalloprotease ADAMTS-13. Objectives: To determine whether ADAMTS-13 consumption due to its binding to, and/or cleavage, of VWF contributes to its decrease during sepsis and whether abrogating or enhancing ADAMTS-13 activity influences sepsis outcome. Methods: ADAMTS-13 activity was evaluated in a model of sepsis induced by cecum ligature and puncture (CLP) in wild-type and Vwf−/− mice. Sepsis outcome was studied in those mice and in Adamts-13−/− mice. Finally, survival was studied in wild-type mice injected hydrodynamically with the human ADAMTS-13 gene. Results: In wild-type mice, CLP-induced sepsis elicited a significant ADAMTS-13 decrease, and a strong negative correlation existed between VWF and ADAMTS-13. In Vwf−/− mice, CLP also induced severe sepsis, but ADAMTS-13 was not significantly diminished. Notably, Vwf−/− mice lived significantly longer than wild-type mice. In contrast, Adamts-13−/− mice and wild-type mice were comparable with regard to thrombocytopenia, VWF concentrations, absence of thrombi, and survival. Hydrodynamic hADAMTS-13 gene transfer with the pLIVE expression vector resulted in high and stable ADAMTS13 activity in CLP mice; however, no impact on survival was observed. Conclusions: VWF secretion is a major determinant of ADAMTS-13 decrease in the CLP model, and plays an important role in sepsis-induced mortality, but the complete absence of its regulating protease, ADAMTS-13, had no detectable impact in this sepsis model. Furthermore, increasing ADAMTS-13 activity had no impact on survival

    Live Wire - A Low-Complexity Body Channel Communication System for Landmark Identification

    Get PDF
    This paper presents a robust simplex Body Channel Communication (BCC) system aimed at providing an interactive infrastructure solution for visually impaired people. Compared to existing BCC solutions, it provides high versatility, weara- bility and installability in an environment in a low complexity hardware-software solution. It operates with a ground referred transmitter (TX) and it is based on an asynchronous thresh- old receiver (RX) architecture. Synchronization, demodulation and packetizing and threshold control are completely software defined and implemented using MicroPython. The RX includes BluetoothÂź (BT) radio connectivity and a cell-phone application provides push text-to-speech notifications to a smartphone. The hardware achieves a Packet Error Rate (PER) of ∌0.1 at 550 kHz pulse center frequency, Synchronized-On Off Keying (S- OOK) modulation and 1 kbps data rate, for an average current consumption of 44mA
    • 

    corecore