68 research outputs found
CD98hc facilitates B cell proliferation and adaptive humoral immunity.
The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell-specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid-transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates
Comprehensive analysis of blood cells and plasma identifies tissue-specific miRNAs as potential novel circulating biomarkers in cattle
Abstract Background The potential of circulating miRNAs as biomarkers of tissue function, both in health and disease, has been extensively demonstrated in humans. In addition, circulating miRNA biomarkers offer significant potential towards improving the productivity of livestock species, however, such potential has been hampered by the absence of information on the nature and source of circulating miRNA populations in these species. In addition, many miRNAs originally proposed as robust biomarkers of a particular tissue or disease in humans have been later shown not to be tissue specific and thus to actually have limited biomarker utility. In this study, we comprehensively analysed miRNA profiles in plasma and cell fractions of blood from cattle with the aim to identify tissue-derived miRNAs which may be useful as biomarkers of tissue function in this important food animal species. Results Using small RNA sequencing, we identified 92 miRNAs with significantly higher expression in plasma compared to paired blood cell samples (n = 4 cows). Differences in miRNA levels between plasma and cell fractions were validated for eight out of 10 miRNAs using RT-qPCR (n = 10 cows). Among miRNAs found to be enriched in plasma, we confirmed miR-122 (liver), miR-133a (muscle) and miR-215 (intestine) to be tissue-enriched, as reported for other species. Profiling of additional miRNAs across different tissues identified the human homologue, miR-802, as highly enriched specifically in liver. Conclusions These results provide novel information on the source of bovine circulating miRNAs and could significantly facilitate the identification of production-relevant tissue biomarkers in livestock. In particular, miR-802, a circulating miRNA not previously identified in cattle, can reportedly regulate insulin sensitivity and lipid metabolism, and thus could potentially provide a specific biomarker of liver function, a key parameter in the context of post-partum negative energy balance in dairy cows
AurkA inhibitors enhance the effects of B-RAF and MEK inhibitors in melanoma treatment
Background
Aurora Kinase A (AurkA), one of the key regulators of M phase progression, is ver-expressed in melanoma and has been observed to limit tumor growth [1, 2]. The otential use of this molecule as target for biological therapy in melanoma has been examined.
Materials and methods
A375mel (BRAFV600E) melanoma cell line was used in this study. The cell line was exposed to B-RAF inhibitor (GSK2118436), MEK inhibitor (GSK1120212) and AurkA inhibitor (MLN8054) as single agents or in various combinations (B-RAF plus AurkA inhibitor, MEK plus AurkA inhibitor) or in triple combination (B-RAF plus MEK plus AurkA inhibitor).
The effects on the cell growth of drugs, used as single agents and as different combinations, were examined by the xCELLigence technology. Total protein extracts were examined for p53 and c-myc protein expression by Western Blot analysis. The drug’s efficacy was also tested by using a 3D-human melanoma skin reconstruction model.
Results
A375 (BRAFV600E) melanoma cells treatment with AurkA inhibitors in combination with B-RAF and/or MEK inhibitors alone and/or with both B-RAF/MEK inhibitors, increased the anti-tumor efficacy of the drugs than given as single agents.
The AurkA inhibitors enhancing anti-melanoma effect on B-RAF and MEK inhibitors was furthermore confirmed in a 3D-human melanoma model, where it was restricted to a melanoma cell sub-population localized at epithelial/dermal junction site. However, S-100 and Ki-67 positively stained spindle-shaped cells were detected in the dermal stratum, suggesting the presence of alive and proliferating melanoma cells.
Conclusions
These findings provide new prospects for melanoma research. For the first time, based on these results, it was observed that the triple combination treatment was more efficacious as anti-melanoma therapy. Interesting, the treatment was efficacious only on polygonal-shaped melanoma cells present at the epidermal/dermal junction site as small nests, while spindle-shaped melanoma cells present in the dermal stratum remained alive and proliferating. This finding suggested that these cells may account of the drug resistance and so be responsible of disease recurrence later on. Molecular characterization of these dermal cells may be critical for the development of novel therapeutic strategies
Reduced expression of a gene proliferation signature is associated with enhanced malignancy in colon cancer
The association between cell proliferation and the malignant potential of colon cancer is not well understood. Here, we evaluated this association using a colon-specific gene proliferation signature (GPS). The GPS was derived by combining gene expression data obtained from the analysis of a cancer cell line model and a published colon crypt profile. The GPS was overexpressed in both actively cycling cells in vitro and the proliferate compartment of colon crypts. K-means clustering was used to independantly stratify two cohorts of colon tumours into two groups with high and low GPS expression. Notably, we observed a significant association between reduced GPS expression and an increased likelihood of recurrence (P<0.05), leading to shorter disease-free survival in both cohorts. This finding was not a result of methodological bias as we verified the well-established association between breast cancer malignancy and increased proliferation, by applying our GPS to public breast cancer data. In this study, we show that reduced proliferation is a biological feature characterizing the majority of aggressive colon cancers. This contrasts with many other carcinomas such as breast cancer. Investigating the reasons underlying this unusual observation may provide important insight into the biology of colon cancer progression and putative novel therapy options
RNAi-Mediated Knock-Down of Arylamine N-acetyltransferase-1 Expression Induces E-cadherin Up-Regulation and Cell-Cell Contact Growth Inhibition
Arylamine N-acetyltransferase-1 (NAT1) is an enzyme that catalyzes the biotransformation of arylamine and hydrazine substrates. It also has a role in the catabolism of the folate metabolite p-aminobenzoyl glutamate. Recent bioinformatics studies have correlated NAT1 expression with various cancer subtypes. However, a direct role for NAT1 in cell biology has not been established. In this study, we have knocked down NAT1 in the colon adenocarcinoma cell-line HT-29 and found a marked change in cell morphology that was accompanied by an increase in cell-cell contact growth inhibition and a loss of cell viability at confluence. NAT1 knock-down also led to attenuation in anchorage independent growth in soft agar. Loss of NAT1 led to the up-regulation of E-cadherin mRNA and protein levels. This change in E-cadherin was not attributed to RNAi off-target effects and was also observed in the prostate cancer cell-line 22Rv1. In vivo, NAT1 knock-down cells grew with a longer doubling time compared to cells stably transfected with a scrambled RNAi or to parental HT-29 cells. This study has shown that NAT1 affects cell growth and morphology. In addition, it suggests that NAT1 may be a novel drug target for cancer therapeutics
Role of T198 Modification in the Regulation of p27Kip1 Protein Stability and Function
The tumor suppressor gene p27Kip1 plays a fundamental role in human cancer progression. Its expression and/or functions are altered in almost all the different tumor histotype analyzed so far. Recently, it has been demonstrated that the tumor suppression function of p27 resides not only in the ability to inhibit Cyclins/CDKs complexes through its N-terminal domain but also in the capacity to modulate cell motility through its C-terminal portion. Particular interest has been raised by the last amino-acid, (Threonine 198) in the regulation of both protein stability and cell motility
Cytoplasmic Skp2 Expression Is Increased in Human Melanoma and Correlated with Patient Survival
BACKGROUND: S-phase kinase protein 2 (Skp2), an F-box protein, targets cell cycle regulators via ubiquitin-mediated degradation. Skp2 is frequently overexpressed in a variety of cancers and associated with patient survival. In melanoma, however, the prognostic significance of subcellular Skp2 expression remains controversial. METHODS: To investigate the role of Skp2 in melanoma development, we constructed tissue microarrays and examined Skp2 expression in melanocytic lesions at different stages, including 30 normal nevi, 61 dysplastic nevi, 290 primary melanomas and 146 metastatic melanomas. The TMA was assessed for cytoplasmic and nuclear Skp2 expression by immunohistochemistry. The Kaplan-Meier method was used to evaluate the patient survival. The univariate and multivariate Cox regression models were performed to estimate the hazard ratios (HR) at five-year follow-up. RESULTS: Cytoplasmic but not nuclear Skp2 expression was gradually increased from normal nevi, dysplastic nevi, primary melanomas to metastatic melanomas. Cytoplasmic Skp2 expression correlated with AJCC stages (I vs II-IV, P<0.001), tumor thickness (≤2.00 vs >2.00 mm, P<0.001) and ulceration (P = 0.005). Increased cytoplasmic Skp2 expression was associated with a poor five-year disease-specific survival of patients with primary melanoma (P = 0.018) but not metastatic melanoma (P>0.05). CONCLUSION: This study demonstrates that cytoplasmic Skp2 plays an important role in melanoma pathogenesis and its expression correlates with patient survival. Our data indicate that cytoplasmic Skp2 may serve as a potential biomarker for melanoma progression and a therapeutic target for this disease
A survey of wild plant species for food use in Sicily (Italy) – results of a 3-year study in four Regional Parks
MicroRNAs as Key Players in Melanoma Cell Resistance to MAPK and Immune Checkpoint Inhibitors.
- …
