474 research outputs found

    MTHFR gene polymorphism, homocysteine and cardiovascular disease.

    Get PDF
    AbstractHomocysteine is an emerging new risk factor for cardiovascular disease. It is a thiol compound derived from methionine and involved in two main metabolic pathways: the cycle of activated methyl groups, requiring folate and vitamin B12 as cofactors, and the transsulfuration pathway to cystathionine and cysteine requiring vitamin B6 as cofactor. The homocysteine metabolism represents an interesting model of gene-environment interaction. Elevations in homocysteine may be caused by genetic defects in enzymes involved in its metabolism or by deficiencies in cofactor levels. A common polymorphism in the gene coding for the 5, 10-methylene tetrahydrofolate reductase (MTHFR) (C677T, Ala → Val) is associated with a decreased activity of the enzyme due to thermolability. In case of homozygosity for the Val allele, a relative deficiency in the remethylation process of homocysteine into methionine leads to a mild-to-moderate hyperhomocysteinemia, a condition recognized as an independent risk factor for atherosclerosis. The genetic influence of the MTHFR polymorphism on homocysteine levels is attenuated in females in premenopausal age and is not significant in subjects who exhibit serum levels of folate and/or vitamin B12 above the 50thpercentile of distribution in the general population. The prevalence of the Val/Val genotype varies among different ethnic groups. It is very low in African populations, whereas in Europe and North America it ranges between 5% and 15%. In Italy an even higher prevalence has been reported in some regions. The question whether the MTHFR polymorphism might beper sean independent contributor to cardiovascular risk is debated. The interaction between this or other genetic factors and environmental/nutritional conditions (i.e. intake of vitamins such as folate) is a key determinant for homocysteine concentrations in healthy conditions as well as in some disease (i.e. in renal disorders). Another example of gene/environment interaction in the field of atherosclerosis is given by the apolipoprotein E polymorphism and its influence in response to diet. The presence of a high prevalence of risk-related allelic variants of such candidate genes within a certain population could serve to locally reinforce the recommendations concerning nutrient intake

    The Capillary Bed in the Choroid Plexus of the Lateral Ventricles: A Study of Luminal Casts

    Get PDF
    Micro-angioarchitecture of the choroid plexus of the lateral ventricles is investigated in microcorrosion casts of animal and human preparations studied with the scanning electron microscope. The capillary bed in the diverse regions of the tissue belongs to one of three patterns: (1)-a network of capillary meshes that envelop the larger arteries and veins predominates in the central segment. (2)-in the villous regions a leaf-like organization of sinusoids is found together with (3)-fronds of glomerular formations. Glomeruli are formed when arterial afferents and venous efferents converge in a quasi hilar structure before branching in arterio-venous loops. Nodular thickenings are observed on glomerular capillaries The preparations studied (rat, dog, human) are remarkably similar and differ mostly in degree of occurrence of common architectural patterns. Arterio-venous communications are found at the hilus of human glomerular formations

    Jatrophane diterpenes as modulators of multidrug resistance. Advances of structure-activity relationships and discovery of the potent lead pepluanin A

    Get PDF
    From the whole plant of Euphorbia peplus L., five new diterpenes based on a jatrophane skeleton (pepluanins A-E, 1-5) were isolated, together with two known analogues (6 and 7), which served to divulge in detail the structure-activity relationships within this class of P-glycoprotein inhibitors. The results revealed the importance of substitutions on the medium-sized ring (carbons 8, 9, 14, and 15). In particular, the activity is collapsed by the presence of a free hydroxyl at C-8, while it increases with a carbonyl at C-14, an acetoxyl at C-9, and a free hydroxyl at C-15. The most potent compound of the series, pepluanin A, showed a very high activity for a jatrophane diterpene, outperforming cyclosporin A by a factor of at least 2 in the inhibition of Pgp-mediated daunomycin transport

    Transcriptomic analysis of the response of Acropora millepora to hypo-osmotic stress provides insights into DMSP biosynthesis by corals

    Get PDF
    © 2017 The Author(s). Background: Dimethylsulfoniopropionate (DMSP) is a small sulphur compound which is produced in prodigious amounts in the oceans and plays a pivotal role in the marine sulfur cycle. Until recently, DMSP was believed to be synthesized exclusively by photosynthetic organisms; however we now know that corals and specific bacteria can also produce this compound. Corals are major sources of DMSP, but the molecular basis for its biosynthesis is unknown in these organisms. Results: Here we used salinity stress, which is known to trigger DMSP production in other organisms, in conjunction with transcriptomics to identify coral genes likely to be involved in DMSP biosynthesis. We focused specifically on both adults and juveniles of the coral Acropora millepora: after 24 h of exposure to hyposaline conditions, DMSP concentrations increased significantly by 2.6 fold in adult corals and 1.2 fold in juveniles. Concomitantly, candidate genes enabling each of the necessary steps leading to DMSP production were up-regulated. Conclusions: The data presented strongly suggest that corals use an algal-like pathway to generate DMSP from methionine, and are able to rapidly change expression of the corresponding genes in response to environmental stress. However, our data also indicate that DMSP is unlikely to function primarily as an osmolyte in corals, instead potentially serving as a scavenger of ROS and as a molecular sink for excess methionine produced as a consequence of proteolysis and osmolyte catabolism in corals under hypo-osmotic conditions

    Oil spill source identification using colorimetric detection

    Get PDF
    The colorimetric detection of polycyclic aromatic hydrocarbons (PAHs) was investigated for the quick and easy identification of likely oil spill offenders. In this new technology, photochromic compounds were used to sense PAHs by varying their photoswitching capacity. To that end, three photochromes were designed and showed varying degrees of photoswitching inhibition depending on PAH analyte, photochrome and excitation wavelength. PAH mixtures that mimic oil spills showed the same varying response and demonstrated the accuracy of this technology. To prove the applicability of this technology, an array was assembled using the three photochromes at three excitation wavelengths and tested against authentic crude oil samples. Not only could these samples be differentiated, weathering of two distinctly different oil samples showed limited variation in response, demonstrating that this may be a viable technique for in situ oil identification

    Pd-Catalysed oxidative carbonylation of α-amino amides to hydantoins under mild conditions

    Get PDF
    The first example of palladium-catalysed oxidative carbonylation of unprotected α-amino amides to hydantoins is described here. The selective synthesis of the target compounds was achieved under mild conditions (1 atm of CO), without ligands and bases. The catalytic system overrode the common reaction pathway that usually leads instead to the formation of symmetrical ureas

    The photodecarboxylative addition of carboxylates to phthalimides as a key-step in the synthesis of biologically active 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones

    Get PDF
    The synthesis of various 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones was realized following a simple three-step process. The protocol utilized the photodecarboxylative addition of readily available carboxylates to N-(bromoalkyl)phthalimides as a versatile and efficient key step. The initially obtained hydroxyphthalimidines were readily converted to the desired N-diaminoalkylated 3-arylmethylene-2,3-dihydro-1H-isoindolin-1-ones via acid-catalyzed dehydration and subsequent nucleophilic substitution with the corresponding secondary amines. The procedure was successfully applied to the synthesis of known local anesthetics (AL-12, AL-12B and AL-5) in their neutral forms

    Discovery and Characterization of 2-Aminobenzimidazole Derivatives as Selective NOD1 Inhibitors

    Get PDF
    SummaryNLR family proteins play important roles in innate immune response. NOD1 (NLRC1) activates various signaling pathways including NF-κB in response to bacterial ligands. Hereditary polymorphisms in the NOD1 gene are associated with asthma, inflammatory bowel disease, and other disorders. Using a high throughput screening (HTS) assay measuring NOD1-induced NF-κB reporter gene activity, followed by multiple downstream counter screens that eliminated compounds impacting other NF-κB effectors, 2-aminobenzimidazole compounds were identified that selectively inhibit NOD1. Mechanistic studies of a prototypical compound, Nodinitib-1 (ML130; CID-1088438), suggest that these small molecules cause conformational changes of NOD1 in vitro and alter NOD1 subcellular targeting in cells. Altogether, this inaugural class of inhibitors provides chemical probes for interrogating mechanisms regulating NOD1 activity and tools for exploring the roles of NOD1 in various infectious and inflammatory diseases

    Stress Increases Peripheral Axon Growth and Regeneration Through Glucocorticoid Receptor-Dependent Transcriptional Programs

    Get PDF
    Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity
    • …
    corecore